

Université de Lille

Differential Privacy has Bounded Impact on Fairness in Classification

Paul Mangold, Michaël Perrot, Aurélien Bellet, Marc Tommasi Inria Lille, France

Classifiers and Margin [1]

Feature space \mathcal{X} , sensitive attributes \mathcal{S} , labels \mathcal{Y} . Decision function $h \in \mathcal{H} \subseteq \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$.

We classify $x \in \mathcal{X}$ as:

$$H(x) = {
m arg\,max}_{y\in \mathcal{Y}} \, h(x,y) \qquad {
m for} \; x\in \mathcal{X}$$
 .

Confidence margin of *h* for label *y* on input *x*:

 $\rho(h, x, y) = h(x, y) - \max_{y' \neq y} h(x, y')$

Group Fairness (Example of Equality of Opportunity [2])

Fairness level of $h \in \mathcal{H}$, for $(y, k) \in \mathcal{Y} \times S$, for "desirable" labels y:

$$F_{(y,k)}(h,D) = \mathbb{P}(H(X) = Y \mid Y = y, S = k) - \mathbb{P}(H(X) = Y \mid Y = y)$$

(Equalized odds, accuracy parity, and demographic parity have similar expressions.) Average fairness level: $Fair(h, D) = \frac{1}{|\mathcal{Y} \times \mathcal{S}|} \sum_{(y,k) \in \mathcal{Y} \times \mathcal{S}} F_{(y,k)}(h, D)$.

Private Empirical Risk Minimization [3]

Summary

The difference of fairness between private and optimal models vanishes since:

- 1. Group fairness notions are pointwise Lipschitz.
- 2. Models learned by output perturbation or DP-SGD converge to non-private one at a rate $O(\sqrt{p}/n\epsilon)$.

Main Assumption: Lipschitz Margins

For $x, y \in \mathcal{X} \times \mathcal{Y}$, there exists $L_{x,y}$ such that for all $h, h' \in \mathcal{H}$

$$\|
ho(h, x, y) -
ho(h', x, y)\| \leq L_{x,y} \|h - h'\|$$

Assume strongly-convex loss. Release an (ϵ, δ) -DP value: $h^{ ext{priv}} pprox h^* \in rgmin_{h \in \mathcal{H}} rac{1}{n} \sum_{\substack{(x,s,y) \in D}} \ell(h(x), y) ,$ (ERM) ► Output Perturbation [3]:

$$h^{priv} = h^* + \mathcal{N}\left(0, O\left(\frac{p}{n^2\epsilon^2}\right)\right) \quad .$$
DP-SGD [4], compute for $t = 0 \dots, T - 1$:

$$h^{t+1} = h^t - \eta \left(\left(\nabla f_i(h^t) + \mathcal{N}\left(0, O\left(\frac{pT}{n^2\epsilon^2}\right)\right) \right) \right),$$

and return $h^{priv} = h^T$.

In both cases

s:
$$\left\| h^{priv} - h^* \right\| = O\left(\frac{\sqrt{p}}{n\epsilon} \right)$$

(Some) Group Fairness Notions are Pointwise Lipschitz

For
$$h, h' \subseteq \mathcal{H}$$
, and any event E : $\left| \mathbb{P}(H(X) = Y \mid E) - \mathbb{P}(H'(X) = Y \mid E) \right| \leq \mathbb{E} \left(\frac{L_{X,Y}}{|\rho(h,X,Y)|} \Big| E \right) \|h - h'\|$.

$$\implies \left|F_{(y,k)}(h,D) - F_{(y,k)}(h',D)\right| \leq \chi_{(y,k)}(h) \cdot \|h - h'\| \text{, with } \chi_{(y,k)}(h) = \mathbb{E}\left(\frac{L_{X,Y}}{|\rho(h,X,Y)|} \middle| Y = y, S = k\right) + \mathbb{E}\left(\frac{L_{X,Y}}{|\rho(h,X,Y)|} \middle| Y = y\right)$$

Fairness Loss due to Privacy Vanishes in $O(\sqrt{p}/n\epsilon)$

$$\left|F_{(y,k)}(h^*,D) - F_{(y,k)}(h^{priv},D)\right| \le \chi_{(y,k)}(h^{ref}) \cdot O(\sqrt{p}/n\epsilon) \ , \qquad \qquad ext{for } h^{ref} \in \{h^{priv},h^*\} \ .$$

This guarantees that the fairness level of h^{priv} is close to the one of h^* , even when the latter is unknown.

---- knowing empirical value of $||h^{priv} - h^*||$,

With $F_k(h, D) = C_k^0 + \sum_{k'=1}^K C_k^{k'} \mathbb{P}(H(X) = Y \mid D_{k'}),$ (e.g. for equalized odds, accuracy parity, demographic parity...)

- Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. "Multi-Class Classification with |1| Maximum Margin Multiple Kernel". In: ICML. 2013.
- Moritz Hardt et al. "Equality of Opportunity in Supervised Learning". In: NeurIPS. 2016. [2]
- Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sarwate. "Differentially Private Em-[3] pirical Risk Minimization". In: JMLR (2011).
- Raef Bassily, Adam Smith, and Abhradeep Thakurta. "Private Empirical Risk Minimization: |4| Efficient Algorithms and Tight Error Bounds". In: 2014 IEEE 55th Annual Symposium on Foundations of Computer Science. 2014.