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Classifiers and Margin [1]

Feature space X , sensitive attributes S, labels Y .
Decision function h ∈ H ⊆ X × Y → R.

We classify x ∈ X as:

H(x) = arg maxy∈Y h(x , y) for x ∈ X .

Confidence margin of h for label y on input x :

ρ(h, x , y) = h(x , y)−maxy ′ 6=y h(x , y ′) .

Group Fairness (Example of Equality of Opportunity [2])

Fairness level of h ∈ H, for (y , k) ∈ Y × S, for “desirable” labels y :

F(y ,k)(h,D) = P(H(X ) = Y | Y = y , S = k)− P(H(X ) = Y | Y = y) .

(Equalized odds, accuracy parity, and demographic parity have similar expressions.)

Average fairness level: Fair(h,D) =
1

|Y × S|
∑

(y ,k)∈Y×S

F(y ,k)(h,D) .

Summary

The difference of fairness between private and optimal
models vanishes since:

1. Group fairness notions are pointwise Lipschitz.

2. Models learned by output perturbation or DP-SGD
converge to non-private one at a rate O(

√
p/nε).

Main Assumption: Lipschitz Margins

For x , y ∈ X × Y , there exists Lx ,y such that for all h, h′ ∈ H

‖ρ(h, x , y)− ρ(h′, x , y)‖ ≤ Lx ,y ‖h − h′‖ .

Private Empirical Risk Minimization [3]

Assume strongly-convex loss. Release an (ε, δ)-DP value:

hpriv ≈ h∗ ∈ arg min
h∈H

1

n

∑
(x ,s,y)∈D

`(h(x), y) , (ERM)

IOutput Perturbation [3]:

hpriv = h∗ +N
(

0,O
( p

n2ε2

))
.

IDP-SGD [4], compute for t = 0 . . . ,T − 1:

ht+1 = ht − η
(

(∇fi(ht) +N
(

0,O

(
pT

n2ε2

)))
,

and return hpriv = hT .

In both cases:
∥∥hpriv − h∗

∥∥ = O
(√

p

nε

)
with high proba .

(Some) Group Fairness Notions are Pointwise Lipschitz

For h, h′ ⊆ H, and any event E :
∣∣∣P(H(X ) = Y | E )− P(H ′(X ) = Y | E )

∣∣∣ ≤ E
(

LX ,Y
|ρ(h,X ,Y )|

∣∣∣E) ‖h − h′‖.

=⇒
∣∣F(y ,k)(h,D)− F(y ,k)(h

′,D)
∣∣ ≤ χ(y ,k)(h) · ‖h − h′‖ , with χ(y ,k)(h) = E

(
LX ,Y

|ρ(h,X ,Y )|

∣∣∣Y = y , S = k
)

+ E
(

LX ,Y
|ρ(h,X ,Y )|

∣∣∣Y = y
)

.

Fairness Loss due to Privacy Vanishes in O(
√

p/nε)∣∣F(y ,k)(h
∗,D)− F(y ,k)(h

priv,D)
∣∣ ≤ χ(y ,k)(h

ref ) · O(
√
p/nε) , for href ∈ {hpriv, h∗} .

This guarantees that the fairness level of hpriv is close to the one of h∗, even when the latter is unknown.

Numerical Results on Logistic Regression

With ε = 1, δ = 1
n2 on celebA (n = 182k) and folktables (n = 1, 600k).

Three variants of the bound, depending on knowledge of h, h′:
knowing only theoretical bound on

∥∥hpriv − h∗
∥∥,

knowing empirical value of
∥∥hpriv − h∗

∥∥,
knowing actual values of hpriv and h∗.
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(a) celebA
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(b) folktablesMore generally

With Fk(h,D) = C 0
k +

∑K
k ′=1 C

k ′

k P (H(X ) = Y | Dk ′),
(e.g. for equalized odds, accuracy parity, demographic parity. . . )

χk(h) =
K∑

k ′=1

C k ′

k E
(

LX ,Y
|ρ(h,X ,Y )|

∣∣∣∣ Dk ′

)
.
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