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* Examination
« Diagnosis

+ Cure

= possible due to years of medical research

(partly using statistical/machine learning)
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Record Age Pain ... Drug Sick
Ty T 11 How to study influence of
2 4 1 . ,
ﬁg T S possibly many features x;'s
O B S on an outcome y?
#n 13 1 0 1

One way: model Iog(%) as

hys(x) = wy +wy - xi+ -+ wy - X,

Core remark: w* is computed from the data!
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— Trained Classification Model

) + T+ The resulting model:
*_— -ﬂ-.s—+ + . .
+ s * is (quite) accurate
A -1 A A. 1 2 3
oo A * contains info on data
AOA -#-




Two Societal Concerns

#1 Privacy of training data

« guarantee that no confidential information is leaked

#2 Fairness of predictions
« guarantee similar predictions on all groups of population



Privacy Issues

Membership inference*:

“ determine whether a given
record was part of a model’s

training dataset "

*R. Shokri et al. “Membership Inference Attacks Against Machine Learning Models”. 2017.
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Guaranteeing Privacy

Perturb the linear predictor:
hwesn(x) = (wg +m0) + (w + ) x4+ (w, +7,) - %
\/ noise gives plausible deniability — better privacy

x noisy predictions — lower accuracy

=> tension between privacy and utility



How Strong is the Protection?

A : D — wis (€, 0)-Differentially Private*

*C. Dwork. “Differential Privacy”. 2006.
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How Strong is the Protection?
A : D — wis (€, 0)-Differentially Private*
P(A(D) € S) < exp(e) - P(A(D") € S) + &
for all D, D’ that differ on one element

Rule of thumb: € <1, § = o(1/|D|)

*C. Dwork. “Differential Privacy”. 2006.



Two Societal Concerns

#1 Privacy of training data

« guarantee that no confidential information is leaked

#2 Fairness of predictions
« guarantee similar predictions on all groups of population
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Fairness Issues

GROUP FAIRNESS:

=)o

3 ;
%&ﬁ * 2 . Different groups can be
@ lo

s treated differently
ﬁﬁ;ﬁ

Note: Perturbing the model can have a disparate impact?

9E. Bagdasaryan et al. “DP Has Disparate Impact on Model Accuracy”. 2019. 10



How to exploit problem’s structure to:

« obtain better utility?

x study the impact of privacy on fairness?
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2. High-dimensional models with imbalanced solutions
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Empirical Risk Minimization

Note: Most results also hold for composite ERM with Proximal algorithms

How to solve ERM privately?

« smooth: ||V{(w; d) — Vi{(w; d)|| < M|w —w|
« Lipschitz: [|[V{(w;d)| <A
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DP-SGD*1

Differentially Private Stochastic Gradient Descent

Fort=0to T — 1:
* Choose a data record d|

+ Draw noise nt ~ N(0; o%1,)

« Update w'™ = w! — ~f (VA(wi; d}) + 1)

Return w’

*S. Song et al. “Stochastic Gradient Descent with Differentially Private Updates”. 2013.
fR. Bassily et al. “Private ERM: Efficient Algorithms and Tight Error Bounds”. 2014. 15



Privacy of DP-SGD*: 1

For (¢, §)-differential privacy we need

AT
0°=0|—55] ., where |[V{|| <A
n%e
+ Noise increases with number of iterations
« Sampling amplifies privacy

*S. Song et al. “Stochastic Gradient Descent with Differentially Private Updates”. 2013. 16
IR, Bassily et al. “Private ERM: Efficient Algorithms and Tight Error Bounds”. 2014.



Utility of DP-SGD*

E(f(WSGD) . f(W*)) _ O( /\(|_:|3;V#2 T \/?P/\Hy\;ys log(1/4) )

optimization error J privacy error E

*R. Bassily et al. “Private ERM: Efficient Algorithms and Tight Error Bounds”. 2014.
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Utility of DP-SGD*

E(f(w*®P) — f(w")) = o( I/ rog 375 )

after balancing the two terms&

*R. Bassily et al. “Private ERM: Efficient Algorithms and Tight Error Bounds”. 2014.
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Utility of DP-SGD*

E(f(w>P) — f(w")) = e( AW lzy/plog(1/6) )

= and the result is tight (under these assumptions)

*R. Bassily et al. “Private ERM: Efficient Algorithms and Tight Error Bounds”. 2014.
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The Problem of DP-SGD

It fails on imbalanced problems...

15 20 25

X1

)
0 35 40
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We need to refine measure of regularity of f:
* smoothness:

IV(w +t) = VI(w)|| < M][t]
« Lipschitzness:

IVE(w)[] < A
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We need to refine measure of regularity of f:
« coordinate-wise smoothness:
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Vif(w)| <L

19



We need to refine measure of regularity of f:
« coordinate-wise smoothness:

|Vjf(w + te) — Vif (w)| < Mj[t]
« coordinate-wise Lipschitzness:

Vif(w)| <L

Important: M; < M, and L; <A

19



We can now use a more appropriate measure of our space!
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We can now use a more appropriate measure of our space!

15

v M, * X1

p q 1
Scaled norm: ||w|jpmq = (Z Mj2]V|/j|q) 9 for g € {1,2}

j:]_ 20



Contribution 1: DP-CD*

Differentially Private Coordinate Descent

Fort=0to T — 1:

« Choose a coordinate j € [p]
+ Draw noise 1} ~ /\/(O; aj?)
« Update th+1 = w; —(Vif(w') +nj)

o _ 1N T t
Return w™” = >, w

*P. Mangold et al. “Differentially Private Coordinate Descent for Composite ERM". 2022. 2]_



Contribution 1: DP-CD*

Differentially Private Coordinate Descent

Fort=0to T — 1:

« Choose a coordinate j € [p]
« Draw noise 77 ~ N(O 0] (n262)>
+ Update th+1 = w; —(V;f(w) +nj)

o _ 1 N7 t
Return w™” = >, w

*P. Mangold et al. “Differentially Private Coordinate Descent for Composite ERM". 2022. 2]_



DP-SGD noise: DP-CD noise:

15 1.5

10 1.0
> >
fa (.
2 o5 € os
9] o .
% y Coordinate ‘GEJ oo SN C@gmate
Qv 6 10 16 -~ uv 10 14 16
® s © s
5 G}

10 -1.0
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Utility of DP-CD

plog(1/0)

ne

E(f(w™) — f(w")) < 0( HLHM_1HWHM>

Recall that for DP-SGD:

E(F(wSP) — F(w)) < o( plog(1/ 5)/\||WH2>

ne

23
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Numerical lllustration

DP-CD uses more appropriate step sizes

* Regularized logistic

regression
* Raw (imbalanced) data
-@- DP-CD « n = 45,312 records
—A— DP-SGD

*

I I I I I I
0 10 20 30 40 50
Passes on data

p = 8 features

e=186=1/n

*
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Relative Error to
Non-Private Opt

Numerical lllustration
DP-CD does not require amplification by sampling

* Regularized logistic
1071 regression
10-2- + Standardized data
« n = 45,312 records
1073 4
T T T | T T * p = 8 features
0 10 20 30 40 50
Passes on data « e=1 0= l/n2
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Contribution 2: DP-GCD*

Differentially Private Greedy Coordinate Descent
Fort=0to T —1:

+ Draw noise 7, (; ~ Lap (O; O (LJ'T)>

n2€2
* Choose j = arg max \Vj/f(Wt) + G|
J'€lp]
+ Update w*! = w' — 4;(V;f(w') 4 7j)

Return wél = w7

*P. Mangold et al. “High-Dimensional Private ERM by Greedy Coordinate Descent”. 2023.25



DP-SGD noise:
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Utility of DP-GCD

]E(f(WGCD) B f(W*)) <0 <|Og(1/5)|0g(p) [2/3 HWHL;//Ii)

n2/3¢2/3 max

Recall that:

E(F(wS) — f(w')) < o( plog(1/ 5)Auwuz>

ne
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Numerical lllustration

DP-GCD can focus on relevant coordinates

+ Regularized logistic
848 5x107? & ) g
50 regression
=9
03 B + Standardized data
2 & 4x10
© <
g8 « n = 2,600 records

0 10 20
Passes on data

*

p = 501 features
e=186=1/n

*

~#— DP-SGD =—&— DP-CD —@— DP-GCD



DP-SGD =#— DP-CD —@— DP-GCD
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Additional Results

Utility for strongly-convex functions
Refined lower bounds

Proximal DP-CD and DP-GCD
Quasi-sparse problems

Private estimation of constants

Clipping

30



Summary of this Part

Private coordinate descent methods can exploit:
« imbalance in parameter scales and variations
*« imbalance/sparsity of the solution
« adapt to underlying structure
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Summary of this Part

Private coordinate descent methods can exploit:
« imbalance in parameter scales and variations
*« imbalance/sparsity of the solution
« adapt to underlying structure

Open questions: adaptive step sizes and clipping, better
sampling of coordinates, analyze proximal greedy CD...

31



CONTRIBUTIONS

« Study interplay between privacy and fairness

3. Bound on the impact of privacy on fairness

32



Classification Prob
Classical Setting

Take: X — {—1,1}

+
Goal: learn h: X — R # ¥

em

— classify x € X as

y = sign(h(x)) s

33



Classification Problem
Sensitive Group S Setting
Take: X x & — {-1,1} B
] .10 i
Goal: learn h: X — R i t ab
— classify x € X as ?@@]‘ A
" Qﬁ;ﬁ
y = sign(h(x)) " g

33



Measuring Group Fairness

Example: demographic parity*

Fi(h) = P(h(X) > 0]5 = k) — IP’(h(X
f@iﬁﬁ%&

*T. Calders et al. “Building Classifiers with Independency Constraints”

) >0)

*1

2’% -

T

. 2009.
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Fairness and Privacy

How much can fairness be impacted by privacy?
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Fairness and Privacy

How much can fairness be impacted by privacy?

Key assumption:
confidence margin is Lipschitz

[h(x) = H(X)| < Leyllh— A

for x,y e X x )Y

36



Contribution 3: Privacy, Fairness*

Bound on Difference of Fairness

Difference of fairness:

[Fi(h) = Fi(R)| < x«(h)I[h — K|

*P. Mangold et al. “DP Has Bounded Impact on Fairness in Classification”. 2023. 37



Contribution 3: Privacy, Fairness*

Bound on Difference of Fairness

Difference of fairness:

[Fi(h) = Fi(R)| < x«(h)I[h — K|

L
Where y(h) = E(ﬁ

S— k) n E(;,(X Y)|)

*P. Mangold et al. “DP Has Bounded Impact on Fairness in Classification”. 2023. 37




Contribution 3: Privacy, Fairness*

Loss of Fairness due to Privacy is Bounded
Take h = hP™ and H' = h*:

F(1™) — Fi(h)| = 0 <xk(hpr”)@>

ne

rvy __ LX’Y
Where y(hP )—E(MP“V(X)!

_ Lxy
> = k) + E(!hpfiV(X)\)

*P. Mangold et al. “DP Has Bounded Impact on Fairness in Classification”. 2023. 38




Contribution 3: Privacy, Fairness*

Loss of Fairness due to Privacy is Bounded
Take h = hP™ and H' = h*:

F(1™) — Fi(h)| = 0 <xk(hpr”)@>

ne

= No need to know optimal model h*!!

*P. Mangold et al. “DP Has Bounded Impact on Fairness in Classification”. 2023. 38



Numerical lllustration
Not super tight, but meaningful!

2004

©

C:-) 0.03- « folktables dataset

S 002 % n = 182,339 records

©

—

§0.01- }-: x p = 40 features
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Additional Results

« General result on conditional accuracy
* Results for other fairness measures and accuracy

« Multi-class setting

40



Summary of this Part

Fairness of private models:
* is “close” to the one of non-private model

* is influenced by confidence margin of the model

Open questions: use fairness-promoting methods, broader
study of large-margin classifiers...

41



Conclusion

Structure is central to private machine learning:

« allows to improve over generic lower bounds
« can be exploited with ad hoc algorithms

« influences impact of privacy on fairness

42



More General Open Questions

« Fully adaptive private optimization algorithms

* Greedy vs. non-greedy in privacy

*

Evaluating robustness of a convergence analysis

*

DP mechanisms that preserve properties like fairness

*

Vertical private/fair federated learning

43



hank you! :

Please ask questions!!
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