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Record Age
x1

Pain
x2

. . .

. . .
Drug
xp

Sick
y

#1 27 1 · · · 1 1
#2 47 0 · · · 1 0
#3 52 0 · · · 0 0
#4 81 1 · · · 0 1
· · · · · · · · · · · · · · · · · ·
#n 13 1 · · · 0 1

How to study influence of

possibly many features xi ’s

on an outcome y?

One way: model log( P(sick)
P(not sick)) as

hw∗(x) = w ∗
0 + w ∗

1 · x1 + · · · + w ∗
p · xp

Core remark: w ∗ is computed from the data!
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⇒ Trained Classification Model
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The resulting model:

∗ is (quite) accurate

∗ contains info on data
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Two Societal Concerns

#1 Privacy of training data
∗ guarantee that no confidential information is leaked

#2 Fairness of predictions
∗ guarantee similar predictions on all groups of population

5



Privacy Issues

Membership inference∗:

“ determine whether a given

record was part of a model’s

training dataset “

∗R. Shokri et al. “Membership Inference Attacks Against Machine Learning Models”. 2017.
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Guaranteeing Privacy

Perturb the linear predictor:

hw∗(x) = w ∗
0 + w ∗

1 · x1 + · · ·+ w ∗
p · xp
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Guaranteeing Privacy

Perturb the linear predictor:

hw∗+η(x) = (w ∗
0 + η0) + (w ∗

1 + η1) · x1 + · · ·+ (w ∗
p + ηp) · xp

noise gives plausible deniability → better privacy

noisy predictions → lower accuracy

⇒ tension between privacy and utility
7



How Strong is the Protection?

A : D 7→ w is (ϵ, δ)-Differentially Private∗

P(A(D) ∈ S) ≤ exp(ϵ) · P(A(D ′) ∈ S) + δ

for all D,D ′ that differ on one element

Rule of thumb: ϵ ≤ 1, δ = o(1/|D|)

∗C. Dwork. “Differential Privacy”. 2006.
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Fairness Issues
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Group Fairness:

Different groups can be
treated differently

Note: Perturbing the model can have a disparate impact
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Note: Perturbing the model can have a disparate impacta

aE. Bagdasaryan et al. “DP Has Disparate Impact on Model Accuracy”. 2019. 10



How to exploit problem’s structure to:

∗ obtain better utility?

∗ study the impact of privacy on fairness?
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Contributions

∗ Private learning algorithms exploiting structure
1. Imbalanced parameter scales and variations

2. High-dimensional models with imbalanced solutions

∗ Study interplay between privacy and fairness
3. Bound on the impact of privacy on fairness
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Empirical Risk Minimization
Note: Most results also hold for composite ERM with Proximal algorithms

w ∗ ∈ arg min
w∈W

{
f (w) =

1

n

n∑
i=1

ℓ(w ; di)

}

Where W ⊆ Rp, has diameter ∥W∥2, and ℓ is

∗ convex: ℓ(w ; d) ≥ ℓ(w ′; d) + ⟨∇ℓ(w ′; d),w − w ′⟩
∗ smooth: ∥∇ℓ(w ; d)−∇ℓ(w ′; d)∥ ≤ M∥w − w ′∥
∗ Lipschitz:
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How to solve ERM privately?
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DP-SGD∗, †
Differentially Private Stochastic Gradient Descent

For t = 0 to T − 1:

∗ Choose a data record di

∗ Draw noise ηt ∼ N (0;σ2Ip)

∗ Update w t+1 = w t − γt (∇ℓ(w t ; di) + ηt)

Return wT

∗S. Song et al. “Stochastic Gradient Descent with Differentially Private Updates”. 2013.
†R. Bassily et al. “Private ERM: Efficient Algorithms and Tight Error Bounds”. 2014. 15



Privacy of DP-SGD∗, †

For (ϵ, δ)-differential privacy we need

σ2 = O

(
ΛT

n2ϵ2

)
, where ∥∇ℓ∥ ≤ Λ

∗ Noise increases with number of iterations

∗ Sampling amplifies privacy

∗S. Song et al. “Stochastic Gradient Descent with Differentially Private Updates”. 2013.
†R. Bassily et al. “Private ERM: Efficient Algorithms and Tight Error Bounds”. 2014. 16



Utility of DP-SGD∗

E(f (wSGD)− f (w ∗)) = O

(
Λ∥W∥2
ϵ
√
T

+
√
TpΛ∥W∥2 log(1/δ)

n2ϵ

)

optimization error privacy error

∗R. Bassily et al. “Private ERM: Efficient Algorithms and Tight Error Bounds”. 2014.
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Utility of DP-SGD∗

E(f (wSGD)− f (w ∗)) = O

(
Λ∥W∥2

√
p log(1/δ)

nϵ

)

after balancing the two terms

∗R. Bassily et al. “Private ERM: Efficient Algorithms and Tight Error Bounds”. 2014.
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Utility of DP-SGD∗

E(f (wSGD)− f (w ∗)) = Θ

(
Λ∥W∥2

√
p log(1/δ)

nϵ

)

⇒ and the result is tight (under these assumptions)

∗R. Bassily et al. “Private ERM: Efficient Algorithms and Tight Error Bounds”. 2014.
17



The Problem of DP-SGD
It fails on imbalanced problems...
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We need to refine measure of regularity of f :

∗ smoothness:

∥∇f (w + t)−∇f (w)∥ ≤ M∥t∥
∗ Lipschitzness:

∥∇f (w)∥ ≤ Λ

19



We need to refine measure of regularity of f :

∗ coordinate-wise smoothness:

|∇j f (w + tej)−∇j f (w)| ≤ Mj |t|
∗ coordinate-wise Lipschitzness:

|∇j f (w)| ≤ Lj
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We need to refine measure of regularity of f :

∗ coordinate-wise smoothness:

|∇j f (w + tej)−∇j f (w)| ≤ Mj |t|
∗ coordinate-wise Lipschitzness:

|∇j f (w)| ≤ Lj

Important: Mj ≤ M , and Lj ≤ Λ

19



We can now use a more appropriate measure of our space!
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Scaled norm: ∥w∥M,q =
( p∑

j=1

M
q
2
j |wj |q

)1
q
for q ∈ {1, 2}
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Contribution 1: DP-CD∗
Differentially Private Coordinate Descent

For t = 0 to T − 1:

∗ Choose a coordinate j ∈ [p]

∗ Draw noise ηtj ∼ N
(
0;σ2

j

)
∗ Update w t+1

j = w t
j − γj (∇j f (w

t) + ηtj )

Return wCD = 1
T

∑T
t=1 w

t

∗P. Mangold et al. “Differentially Private Coordinate Descent for Composite ERM”. 2022.21



Contribution 1: DP-CD∗
Differentially Private Coordinate Descent

For t = 0 to T − 1:

∗ Choose a coordinate j ∈ [p]

∗ Draw noise ηtj ∼ N
(
0;O

(
LjT
n2ϵ2

))
∗ Update w t+1

j = w t
j − γj (∇j f (w
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DP-SGD noise:
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Utility of DP-CD

E(f (wCD)− f (w ∗)) ≤ O

(√
p log(1/δ)

nϵ
∥L∥M−1∥W∥M

)

Recall that for DP-SGD:

E(f (wSGD)− f (w ∗)) ≤ O

(√
p log(1/δ)

nϵ
Λ∥W∥2

)
23



Numerical Illustration
DP-CD uses more appropriate step sizes
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DP-CD
DP-SGD

∗ Regularized logistic
regression

∗ Raw (imbalanced) data

∗ n = 45, 312 records

∗ p = 8 features

∗ ϵ = 1, δ = 1/n2
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Numerical Illustration
DP-CD does not require amplification by sampling
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Contribution 2: DP-GCD∗
Differentially Private Greedy Coordinate Descent

For t = 0 to T − 1:

∗ Draw noise ηtj , ζ
t
j ∼ Lap

(
0;O

(
LjT
n2ϵ2

))
∗ Choose j = argmax

j ′∈[p]
|∇j ′f (w

t) + ζj ′|

∗ Update w t+1 = w t − γj (∇j f (w
t) + ηtj )

Return wGCD = wT

∗P. Mangold et al. “High-Dimensional Private ERM by Greedy Coordinate Descent”. 2023.25
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Utility of DP-GCD

E(f (wGCD)− f (w ∗)) ≤ O

(
log(1/δ)log(p)

n2/3ϵ2/3
L2/3max∥W∥4/3M ,1

)

Recall that:

E(f (wSGD)− f (w ∗)) ≤ O

(√
p log(1/δ)

nϵ
Λ∥W∥2

)
27



Numerical Illustration
DP-GCD can focus on relevant coordinates
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DP-GCDDP-CDDP-SGD
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Additional Results

∗ Utility for strongly-convex functions

∗ Refined lower bounds

∗ Proximal DP-CD and DP-GCD

∗ Quasi-sparse problems

∗ Private estimation of constants

∗ Clipping

30



Summary of this Part

Private coordinate descent methods can exploit:

∗ imbalance in parameter scales and variations

∗ imbalance/sparsity of the solution

∗ adapt to underlying structure

Open questions: adaptive step sizes and clipping, better

sampling of coordinates, analyze proximal greedy CD...
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Contributions

∗ Private learning algorithms exploiting structure
1. Imbalanced parameter scales and variations

2. High-dimensional models with imbalanced solutions

∗ Study interplay between privacy and fairness
3. Bound on the impact of privacy on fairness
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Classification Problem
Classical Setting

Take: X → {−1, 1}

Goal: learn h : X → R

→ classify x ∈ X as

ŷ = sign(h(x))
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Classification Problem
Sensitive Group S Setting

Take: X × S → {−1, 1}

Goal: learn h : X → R

→ classify x ∈ X as

ŷ = sign(h(x))
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Measuring Group Fairness
Example: demographic parity∗

Fk(h) = P(h(X ) > 0|S = k) − P(h(X ) > 0)
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∗T. Calders et al. “Building Classifiers with Independency Constraints”. 2009.
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Fairness and Privacy
How much can fairness be impacted by privacy?
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Fairness and Privacy
How much can fairness be impacted by privacy?
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Key assumption:

confidence margin is Lipschitz

|h(x)− h′(x)| ≤ Lx ,y∥h − h′∥

for x , y ∈ X × Y
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Contribution 3: Privacy, Fairness∗
Bound on Difference of Fairness

Difference of fairness:

|Fk(h)− Fk(h
′)| ≤ χk(h)∥h − h′∥

Where χk(h) = E
(

LX ,Y

|h(X )|

∣∣∣S = k
)
+ E

(
LX ,Y

|h(X )|

)
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Contribution 3: Privacy, Fairness∗
Loss of Fairness due to Privacy is Bounded

Take h = hpriv and h′ = h∗:

|Fk(hpriv)− Fk(h
∗)| = O

(
χk(h

priv)

√
p

nϵ

)

Where χk(h
priv)=E

(
LX ,Y

|hpriv(X )|

∣∣∣S = k
)
+ E

(
LX ,Y

|hpriv(X )|

)
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Contribution 3: Privacy, Fairness∗
Loss of Fairness due to Privacy is Bounded

Take h = hpriv and h′ = h∗:

|Fk(hpriv)− Fk(h
∗)| = O

(
χk(h

priv)

√
p

nϵ

)

⇒ No need to know optimal model h∗!!
∗P. Mangold et al. “DP Has Bounded Impact on Fairness in Classification”. 2023. 38



Numerical Illustration
Not super tight, but meaningful!
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∗ folktables dataset

∗ n = 182, 339 records

∗ p = 40 features

∗ Green = private models
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Additional Results

∗ General result on conditional accuracy

∗ Results for other fairness measures and accuracy

∗ Multi-class setting
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Summary of this Part

Fairness of private models:

∗ is “close” to the one of non-private model

∗ is influenced by confidence margin of the model

Open questions: use fairness-promoting methods, broader

study of large-margin classifiers...
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Conclusion

Structure is central to private machine learning:

∗ allows to improve over generic lower bounds

∗ can be exploited with ad hoc algorithms

∗ influences impact of privacy on fairness
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More General Open Questions

∗ Fully adaptive private optimization algorithms

∗ Greedy vs. non-greedy in privacy

∗ Evaluating robustness of a convergence analysis

∗ DP mechanisms that preserve properties like fairness

∗ Vertical private/fair federated learning
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Thank you! :)
Please ask questions!!
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