Exploiting Problem Structure in Privacy-Preserving Optimization and Machine Learning

> PhD Defense – Paul Mangold Supervisors: Aurélien Bellet, Marc Tommasi

> > October 11, 2023

* Examination

* Examination

- * Examination
- * Cure

- * Examination
- Diagnosis
 - * Cure
- ⇒ possible due to years of medical research (partly using statistical/machine learning)

Record	Age	Pain		Drug	Sick
	x_1	<i>x</i> ₂		Хp	У
#1	27	1		1	1
#2	47	0		1	0
#3	52	0		0	0
#4	81	1		0	1
		• • •	• • •	• • •	• • •
#n	13	1		0	1

How to study influence of possibly many features x_i 's on an outcome y?

Record	Age	Pain		Drug	Sick
	x_1	<i>x</i> ₂		Хp	У
#1	27	1	• • •	1	1
#2	47	0		1	0
#3	52	0		0	0
#4	81	1		0	1
			• • •	• • •	• • •
#n	13	1	•••	0	1

How to study influence of possibly many features x_i 's on an outcome y?

One way: model $\log(\frac{\mathbb{P}(\text{sick})}{\mathbb{P}(\text{not sick})})$ as

$$h_{w^*}(x) = extsf{w}_0^* + extsf{w}_1^* \cdot x_1 + \dots + extsf{w}_p^* \cdot x_p$$

Record	Age	Pain		Drug	Sick
	x_1	<i>x</i> ₂		Xp	У
#1	27	1	• • •	1	1
#2	47	0		1	0
#3	52	0		0	0
#4	81	1		0	1
		• • •	• • •	• • •	• • •
#n	13	1	•••	0	1

How to study influence of possibly many features x_i 's on an outcome y?

One way: model $log(\frac{\mathbb{P}(sick)}{\mathbb{P}(not \ sick)})$ as

$$h_{w^*}(x) = w_0^* + w_1^* \cdot x_1 + \cdots + w_p^* \cdot x_p$$

Core remark: w^{*} is **computed from the data!**

⇒ Trained Classification Model

⇒ Trained Classification Model

⇒ Trained Classification Model

The resulting model: * is (quite) accurate * contains info on data

Two Societal Concerns

#1 Privacy of training data

* guarantee that no confidential information is leaked

#2 Fairness of predictions

* guarantee similar predictions on all groups of population

Privacy Issues

Membership inference*:

" determine whether a given record was part of a model's training dataset "

^{*}R. Shokri et al. "Membership Inference Attacks Against Machine Learning Models". 2017.

Privacy Issues

Membership inference*:

" determine whether a given record was part of a model's training dataset "

*R. Shokri et al. "Membership Inference Attacks Against Machine Learning Models". 2017.

Privacy Issues

Membership inference*:

" determine whether a given record was part of a model's training dataset "

*R. Shokri et al. "Membership Inference Attacks Against Machine Learning Models". 2017.

Perturb the linear predictor:

$$h_{w^*}(x)=w_0^*+w_1^*\cdot x_1+\cdots+w_p^*\cdot x_p$$

Perturb the linear predictor:

$$h_{w^*+\eta}(x) = (w_0^* + \eta_0) + (w_1^* + \eta_1) \cdot x_1 + \cdots + (w_p^* + \eta_p) \cdot x_p$$

Perturb the linear predictor:

$$h_{w^*+\eta}(x) = (w_0^* + \eta_0) + (w_1^* + \eta_1) \cdot x_1 + \cdots + (w_p^* + \eta_p) \cdot x_p$$

 \checkmark noise gives *plausible deniability* \rightarrow better privacy

 $im mathcal{N}$ noisy predictions \rightarrow lower accuracy

Perturb the linear predictor:

$$h_{w^*+\eta}(x) = (w_0^* + \eta_0) + (w_1^* + \eta_1) \cdot x_1 + \cdots + (w_p^* + \eta_p) \cdot x_p$$

 \checkmark noise gives *plausible deniability* \rightarrow better privacy

 \succ noisy predictions \rightarrow lower accuracy

\Rightarrow tension between privacy and utility

How Strong is the Protection?

 $\mathcal{A}: D \mapsto w$ is (ϵ, δ) -Differentially Private*

*C. Dwork. "Differential Privacy". 2006.

How Strong is the Protection?

$\mathcal{A}: D \mapsto w \text{ is } (\epsilon, \delta) \text{-Differentially Private}^*$

$\mathbb{P}(\mathcal{A}(D) \in \mathcal{S}) \leq \exp(\boldsymbol{\epsilon}) \cdot \mathbb{P}(\mathcal{A}(D') \in \mathcal{S}) + \boldsymbol{\delta}$

for all D, D' that differ on one element

^{*}C. Dwork. "Differential Privacy". 2006.

How Strong is the Protection?

$\mathcal{A}: D \mapsto w \text{ is } (\epsilon, \delta) \text{-Differentially Private}^*$

$$\mathbb{P}(\mathcal{A}(D) \in \mathcal{S}) \leq \exp(\boldsymbol{\epsilon}) \cdot \mathbb{P}(\mathcal{A}(D') \in \mathcal{S}) + \boldsymbol{\delta}$$

for all D, D' that differ on one element

Rule of thumb: $\epsilon \leq 1$, $\delta = o(1/|D|)$

^{*}C. Dwork. "Differential Privacy". 2006.

Two Societal Concerns

#1 Privacy of training data

* guarantee that no confidential information is leaked

#2 Fairness of predictions

* guarantee similar predictions on all groups of population

GROUP FAIRNESS:

GROUP FAIRNESS:

GROUP FAIRNESS:

GROUP FAIRNESS:

GROUP FAIRNESS:

Different groups can be treated differently

Note: Perturbing the model can have a disparate impact^a

^aE. Bagdasaryan et al. "DP Has Disparate Impact on Model Accuracy". 2019.

How to exploit problem's structure to:

* obtain better utility?

* study the impact of privacy on fairness?

CONTRIBUTIONS

CONTRIBUTIONS

* Private learning algorithms exploiting structure
1. Imbalanced parameter scales and variations
2. High-dimensional models with imbalanced solutions

CONTRIBUTIONS

- * Private learning algorithms exploiting structure
 1. Imbalanced parameter scales and variations
 2. High-dimensional models with imbalanced solutions
- Study interplay between privacy and fairness
 Bound on the impact of privacy on fairness
CONTRIBUTIONS

- * Private learning algorithms exploiting structure
 1. Imbalanced parameter scales and variations
 2. High-dimensional models with imbalanced solutions
- * Study interplay between privacy and fairness3. Bound on the impact of privacy on fairness

Note: Most results also hold for composite ERM with Proximal algorithms

$$w^* \in \operatorname*{arg\,min}_{w \in \mathcal{W}} \left\{ f(w) = rac{1}{n} \sum_{i=1}^n \ell(w; d_i) \right\}$$

Note: Most results also hold for composite ERM with Proximal algorithms

$$w^* \in \operatorname*{arg\,min}_{w \in \mathcal{W}} \left\{ f(w) = \frac{1}{n} \sum_{i=1}^n \ell(w; d_i) \right\}$$

Where $\mathcal{W} \subseteq \mathbb{R}^{p}$, has diameter $\|\mathcal{W}\|_{2}$, and ℓ is

- * convex: $\ell(w; d) \ge \ell(w'; d) + \langle \nabla \ell(w'; d), w w' \rangle$
- * smooth: $\|\nabla \ell(w; d) \nabla \ell(w'; d)\| \le M \|w w'\|$

* Lipschitz: $|\ell(w; d) - \ell(w'; d)| \le \Lambda ||w - w'||$

Note: Most results also hold for composite ERM with Proximal algorithms

$$w^* \in \operatorname*{arg\,min}_{w \in \mathcal{W}} \left\{ f(w) = \frac{1}{n} \sum_{i=1}^n \ell(w; d_i) \right\}$$

Where $\mathcal{W} \subseteq \mathbb{R}^p$, has diameter $\|\mathcal{W}\|_2$, and ℓ is

* convex: $\ell(w; d) \geq \ell(w'; d) + \langle \nabla \ell(w'; d), w - w' \rangle$

* smooth: $\|\nabla \ell(w; d) - \nabla \ell(w'; d)\| \le M \|w - w'\|$

* Lipschitz: $|\ell(w; d) - \ell(w'; d)| \le \Lambda ||w - w'||$

Note: Most results also hold for composite ERM with Proximal algorithms

$$w^* \in \operatorname*{arg\,min}_{w \in \mathcal{W}} \left\{ f(w) = \frac{1}{n} \sum_{i=1}^n \ell(w; d_i) \right\}$$

Where $\mathcal{W} \subseteq \mathbb{R}^{p}$, has diameter $\|\mathcal{W}\|_{2}$, and ℓ is

- * convex: $\ell(w; d) \ge \ell(w'; d) + \langle \nabla \ell(w'; d), w w' \rangle$
- * smooth: $\|\nabla \ell(w; d) \nabla \ell(w'; d)\| \le M \|w w'\|$

* Lipschitz: $|\ell(w; d) - \ell(w'; d)| \le \Lambda ||w - w'||$

Note: Most results also hold for composite ERM with Proximal algorithms

$$w^* \in \operatorname*{arg\,min}_{w \in \mathcal{W}} \left\{ f(w) = \frac{1}{n} \sum_{i=1}^n \ell(w; d_i) \right\}$$

Where $\mathcal{W} \subseteq \mathbb{R}^{p}$, has diameter $\|\mathcal{W}\|_{2}$, and ℓ is

- * convex: $\ell(w; d) \ge \ell(w'; d) + \langle \nabla \ell(w'; d), w w' \rangle$
- * smooth: $\|\nabla \ell(w; d) \nabla \ell(w'; d)\| \le M \|w w'\|$
- * Lipschitz: $|\ell(w; d) \ell(w'; d)| \le \Lambda ||w w'||$

Note: Most results also hold for composite ERM with Proximal algorithms

$$w^* \in \operatorname*{arg\,min}_{w \in \mathcal{W}} \left\{ f(w) = \frac{1}{n} \sum_{i=1}^n \ell(w; d_i) \right\}$$

Where $\mathcal{W} \subseteq \mathbb{R}^p$, has diameter $\|\mathcal{W}\|_2$, and ℓ is

- * convex: $\ell(w; d) \ge \ell(w'; d) + \langle \nabla \ell(w'; d), w w' \rangle$
- * smooth: $\|\nabla \ell(w; d) \nabla \ell(w'; d)\| \le M \|w w'\|$

* Lipschitz: $\|\nabla \ell(w; d)\| \leq \Lambda$

Note: Most results also hold for composite ERM with Proximal algorithms

How to solve ERM privately?

* smooth: $\|\nabla \ell(w; d) - \nabla \ell(w'; d)\| \le M \|w - w'\|$

* Lipschitz: $\|\nabla \ell(w; d)\| \leq \Lambda$

DP-SGD*,[†]

Differentially Private Stochastic Gradient Descent

For t = 0 to T - 1:

- * Choose a data record d_i
- * Draw noise $\eta^t \sim \mathcal{N}(\mathbf{0}; \sigma^2 \mathbb{I}_p)$

* Update
$$w^{t+1} = w^t - \gamma^t (\nabla \ell(w^t; d_i) + \eta^t)$$

Return w^T

^{*}S. Song et al. "Stochastic Gradient Descent with Differentially Private Updates". 2013. [†]R. Bassily et al. "Private ERM: Efficient Algorithms and Tight Error Bounds". 2014.

Privacy of DP-SGD*,[†]

For (ϵ, δ)-differential privacy we need

$$\sigma^2 = O\left(rac{\Lambda T}{n^2 \epsilon^2}
ight) \ , \quad ext{where } \|
abla \ell\| \leq \Lambda$$

Noise increases with number of iterationsSampling amplifies privacy

*S. Song et al. "Stochastic Gradient Descent with Differentially Private Updates". 2013. †R. Bassily et al. "Private ERM: Efficient Algorithms and Tight Error Bounds". 2014.

Utility of DP-SGD*

$$\mathbb{E}(f(w^{SGD}) - f(w^*)) = O\left(\underbrace{\frac{\Lambda \|W\|_2}{\epsilon\sqrt{T}}}_{\text{optimization error}} + \underbrace{\frac{\sqrt{T}p\Lambda \|W\|_2 \log(1/\delta)}{n^2\epsilon}}_{\text{privacy error}}\right)$$

^{*}R. Bassily et al. "Private ERM: Efficient Algorithms and Tight Error Bounds". 2014.

Utility of DP-SGD*

$$\mathbb{E}(f(w^{SGD}) - f(w^*)) = O\left(\underbrace{\frac{\Lambda \|W\|_2 \sqrt{p \log(1/\delta)}}{n\epsilon}}_{\text{after balancing the two terms}}\right)$$

^{*}R. Bassily et al. "Private ERM: Efficient Algorithms and Tight Error Bounds". 2014.

Utility of DP-SGD*

$$\mathbb{E}(f(w^{SGD}) - f(w^*)) = \Theta\left(\frac{\Lambda \|\mathcal{W}\|_2 \sqrt{p \log(1/\delta)}}{n\epsilon}\right)$$

\Rightarrow and the result is *tight* (under these assumptions)

^{*}R. Bassily et al. "Private ERM: Efficient Algorithms and Tight Error Bounds". 2014.

The Problem of DP-SGD It fails on imbalanced problems...

We need to refine measure of regularity of *f*: * smoothness:

$$\|\nabla f(w+t)-\nabla f(w)\|\leq M\|t\|$$

* Lipschitzness:

 $\|\nabla f(w)\| \leq \Lambda$

We need to refine measure of regularity of *f*: * coordinate-wise smoothness:

$$|\nabla_{j}f(w + te_{j}) - \nabla_{j}f(w)| \leq M_{j}|t|$$

* coordinate-wise Lipschitzness:

 $|\nabla_{\mathbf{j}}f(\mathbf{w})| \leq L_{\mathbf{j}}$

We need to refine measure of regularity of *f*: * coordinate-wise smoothness:

$$|\nabla_j f(w + te_j) - \nabla_j f(w)| \leq M_j |t|$$

* coordinate-wise Lipschitzness:

 $|\nabla_{j}f(w)| \leq L_{j}$

Important:
$$M_j \leq M$$
, and $L_j \leq \Lambda$

We can now use a more appropriate measure of our space!

We can now use a more appropriate measure of our space!

We can now use a more appropriate measure of our space!

Contribution 1: DP-CD* Differentially Private Coordinate Descent

For t = 0 to T - 1:

* Choose a *coordinate* $\mathbf{j} \in [p]$

* Draw noise
$$\eta_{\boldsymbol{j}}^t \sim \mathcal{N}\left(0; \sigma_{\boldsymbol{j}}^2\right)$$

* Update
$$w_j^{t+1} = w_j^t - \gamma_j (\nabla_j f(w^t) + \eta_j^t)$$

Return $w^{CD} = \frac{1}{T} \sum_{t=1}^{T} w^t$

^{*}P. Mangold et al. "Differentially Private Coordinate Descent for Composite ERM". 2022. 21

Contribution 1: DP-CD* Differentially Private Coordinate Descent

For t = 0 to T - 1:

* Choose a *coordinate* $\mathbf{j} \in [p]$

* Draw noise
$$\eta_{j}^{t} \sim \mathcal{N}\left(0; \boldsymbol{O}\left(\frac{\boldsymbol{L}_{j} \boldsymbol{T}}{\boldsymbol{n}^{2} \epsilon^{2}}\right)\right)$$

* Update
$$w_{j}^{t+1} = w_{j}^{t} - \gamma_{j}(\nabla_{j}f(w^{t}) + \eta_{j}^{t})$$

Return $w^{CD} = \frac{1}{T} \sum_{t=1}^{T} w^t$

^{*}P. Mangold et al. "Differentially Private Coordinate Descent for Composite ERM". 2022. 21

DP-SGD noise:

DP-CD noise:

Utility of DP-CD

$$\mathbb{E}(f(w^{CD}) - f(w^*)) \le O\left(\frac{\sqrt{p\log(1/\delta)}}{n\epsilon} \|L\|_{M^{-1}} \|\mathcal{W}\|_{M}\right)$$

Recall that for DP-SGD:

$$\mathbb{E}(f(w^{SGD}) - f(w^*)) \le O\left(\frac{\sqrt{p\log(1/\delta)}}{n\epsilon} \Lambda \|\mathcal{W}\|_2\right)$$

Numerical Illustration DP-CD uses more appropriate step sizes

- Regularized logistic regression
- * Raw (imbalanced) data
- * *n* = 45, 312 records

*
$$p = 8$$
 features

$$*~\epsilon=$$
 1, $\delta=1/\mathit{n}^2$

Numerical Illustration DP-CD does not require amplification by sampling

- Regularized logistic regression
- * Standardized data
- * *n* = 45, 312 records

*
$$p = 8$$
 features

*
$$\epsilon=1$$
, $\delta=1/n^2$

Contribution 2: DP-GCD* Differentially Private Greedy Coordinate Descent

For t = 0 to T - 1:

* Draw noise
$$\eta_{j}^{t}, \zeta_{j}^{t} \sim \text{Lap}\left(0; \boldsymbol{O}\left(\frac{L_{j}\boldsymbol{T}}{\boldsymbol{n}^{2}\epsilon^{2}}\right)\right)$$

* Choose
$$\mathbf{j} = \arg \max |\nabla_{\mathbf{j}'} f(\mathbf{w}^t) + \zeta_{\mathbf{j}'}|$$

 $\mathbf{j}' \in [p]$
* Update $\mathbf{w}^{t+1} = \mathbf{w}^t - \gamma_{\mathbf{j}} (\nabla_{\mathbf{j}} f(\mathbf{w}^t) + \eta_{\mathbf{j}}^t)$

Return $w^{GCD} = w^T$

^{*}P. Mangold et al. "High-Dimensional Private ERM by Greedy Coordinate Descent". 2023.

DP-SGD noise:

DP-GCD noise:

Utility of DP-GCD

$$\mathbb{E}(f(w^{GCD}) - f(w^*)) \le O\left(\frac{\log(1/\delta)\log(p)}{n^{2/3}\epsilon^{2/3}}L_{\max}^{2/3}\|\mathcal{W}\|_{M,1}^{4/3}\right)$$

Recall that:

$$\mathbb{E}(f(w^{SGD}) - f(w^*)) \leq O\left(\frac{\sqrt{p}\log(1/\delta)}{n\epsilon} \Lambda \|\mathcal{W}\|_2\right)$$

Numerical Illustration DP-GCD can focus on relevant coordinates

- * Regularized logistic regression
- * Standardized data
- * *n* = 2,600 records
- * p = 501 features

*
$$\epsilon=1$$
, $\delta=1/n^2$

----- DP-SGD ----- DP-CD ----- DP-GCD

----- DP-SGD ----- DP-CD ----- DP-GCD

----- DP-SGD ----- DP-CD ----- DP-GCD

Additional Results

- * Utility for strongly-convex functions
- * Refined lower bounds
- * Proximal DP-CD and DP-GCD
- * Quasi-sparse problems
- * Private estimation of constants
- * Clipping

Summary of this Part

Private coordinate descent methods can exploit:

- * imbalance in parameter scales and variations
- * imbalance/sparsity of the solution
- * adapt to underlying structure

Summary of this Part

Private coordinate descent methods can exploit:

- * imbalance in parameter scales and variations
- * imbalance/sparsity of the solution
- * adapt to underlying structure

Open questions: adaptive step sizes and clipping, better sampling of coordinates, analyze proximal greedy CD...
CONTRIBUTIONS

- * Private learning algorithms exploiting structure
 1. Imbalanced parameter scales and variations
 2. High-dimensional models with imbalanced solutions
- Study interplay between privacy and fairness
 Bound on the impact of privacy on fairness

Classification Problem Classical Setting

Classification Problem Sensitive Group S Setting

Take:
$$\mathcal{X} \times \mathcal{S} \rightarrow \{-1, 1\}$$

Goal: learn $h : \mathcal{X} \rightarrow \mathbb{R}$

$$ightarrow$$
 classify $x \in \mathcal{X}$ as $\hat{y} = \mathsf{sign}(h(x))$

Measuring Group Fairness

Example: demographic parity*

*T. Calders et al. "Building Classifiers with Independency Constraints". 2009.

> Key assumption: confidence margin is Lipschitz

 $|h(x) - h'(x)| \le L_{x,y} ||h - h'||$

for
$$x,y\in\mathcal{X} imes\mathcal{Y}$$

36

Contribution 3: Privacy, Fairness* Bound on Difference of Fairness

Difference of fairness:

$$|F_k(h) - F_k(h')| \leq \chi_k(h) ||h - h'||$$

*P. Mangold et al. "DP Has Bounded Impact on Fairness in Classification". 2023.

Contribution 3: Privacy, Fairness* Bound on Difference of Fairness

Difference of fairness:

$$|F_k(h) - F_k(h')| \leq \chi_k(h) ||h - h'||$$

Where
$$\chi_k(h) = \mathbb{E}\left(\frac{L_{X,Y}}{|h(X)|}\Big|S = k
ight) + \mathbb{E}\left(\frac{L_{X,Y}}{|h(X)|}
ight)$$

*P. Mangold et al. "DP Has Bounded Impact on Fairness in Classification". 2023.

Contribution 3: Privacy, Fairness* Loss of Fairness due to Privacy is Bounded

Take
$$h = h^{\text{priv}}$$
 and $h' = h^*$:
 $|F_k(h^{\text{priv}}) - F_k(h^*)| = O\left(\chi_k(h^{\text{priv}})\frac{\sqrt{p}}{n\epsilon}\right)$
Where $\chi_k(h^{\text{priv}}) = \mathbb{E}\left(\frac{L_{X,Y}}{|h^{\text{priv}}(X)|}\Big|S = k\right) + \mathbb{E}\left(\frac{L_{X,Y}}{|h^{\text{priv}}(X)|}\right)$

*P. Mangold et al. "DP Has Bounded Impact on Fairness in Classification". 2023.

Contribution 3: Privacy, Fairness* Loss of Fairness due to Privacy is Bounded

Take
$$h = h^{\mathsf{priv}}$$
 and $h' = h^*$:
 $|F_k(h^{\mathsf{priv}}) - F_k(h^*)| = O\left(\chi_k(h^{\mathsf{priv}}) \frac{\sqrt{p}}{n\epsilon}\right)$

.

 \Rightarrow No need to know optimal model $h^*!!$

^{*}P. Mangold et al. "DP Has Bounded Impact on Fairness in Classification". 2023.

Numerical Illustration

Not super tight, but meaningful!

- folktables dataset
- * *n* = 182, 339 records

*
$$p = 40$$
 features

* Green = private models

Numerical Illustration

Not super tight, but meaningful!

- folktables dataset
- * *n* = 182, 339 records
- * p = 40 features
- * Green = private models

Additional Results

- * General result on conditional accuracy
- * Results for other fairness measures and accuracy
- Multi-class setting

Summary of this Part

Fairness of private models:

- * is "close" to the one of non-private model
- * is influenced by confidence margin of the model

Open questions: use fairness-promoting methods, broader study of large-margin classifiers...

Conclusion

Structure is central to private machine learning:

- * allows to improve over generic lower bounds
- * can be exploited with *ad hoc* algorithms
- * influences impact of privacy on fairness

More General Open Questions

- * Fully adaptive private optimization algorithms
- * Greedy vs. non-greedy in privacy
- * Evaluating robustness of a convergence analysis
- * DP mechanisms that preserve properties like fairness
- * Vertical private/fair federated learning

Thank you! :) Please ask questions!!

Publications presented in the thesis

- P. Mangold et al. "Differentially Private Coordinate Descent for Composite ERM". 2022 (ICML)
- P. Mangold et al. "High-Dimensional Private ERM by Greedy Coordinate Descent". 2023 (AISTATS)
- P. Mangold et al. "DP Has Bounded Impact on Fairness in Classification". 2023 (ICML)

Other publications

- H. Hendrikx et al. "The Relative Gaussian Mechanism and its Application to DP-GD". 2023 (working paper)
- J. O. du Terrail et al. "FLamby: Datasets and Benchmarks for Cross-Silo FL in Healthcare". 2022 (NeurIPS)
- A. Lamer et al. "Specifications for the Routine Implementation of FL in Hospitals Networks". 2021 (MIE)
- P. Mangold et al. "A Decentralized Framework for Biostatistics and Privacy Concerns". 2020 (EFMI STC)