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Abstract

The Gaussian Mechanism (GM), which consists in adding Gaussian noise to a
vector-valued query before releasing it, is a standard privacy protection mechanism.
In particular, given that the query respects some L2 sensitivity property (the L2 dis-
tance between outputs on any two neighboring inputs is bounded), GM guarantees
Rényi Differential Privacy (RDP). Unfortunately, precisely bounding the L2 sensi-
tivity can be hard, thus leading to loose privacy bounds. In this work, we consider
a Relative L2 sensitivity assumption, in which the bound on the distance between
two query outputs may also depend on their norm. Leveraging this assumption,
we introduce the Relative Gaussian Mechanism (RGM), in which the variance of
the noise depends on the norm of the output. We prove tight bounds on the RDP
parameters under relative L2 sensitivity, and characterize the privacy loss incurred
by using output-dependent noise. In particular, we show that RGM naturally adapts
to a latent variable that would control the norm of the output. Finally, we instantiate
our framework to show tight guarantees for Private Gradient Descent, a problem
that naturally fits our relative L2 sensitivity assumption.

1 Introduction

Differential Privacy (DP) [Dwork, 2006] is considered the gold standard for protecting privacy, for
instance in machine learning. In this framework, a curator has a database x, and would like to answer
a query R on x by releasing an output R(x). Yet, releasing R(x) might reveal sensitive information
on x. Instead, the curator may use a private algorithm A to release a sanitized approximation A(R)(x)
of R(x). To guarantee that the amount of information leaked by releasing A(R)(x) is limited, DP
ensures that the distributions of A(R)(x) and A(R)(y) are close for any y ∼ x, i.e., that is close to
x according to a neighboring relation (databases that only differ in one row for instance). Several
divergences have been considered to measure the closeness between these two distributions, leading
to different variants of DP. Among them, Rényi-Differential Privacy (RDP), which is based on the
Rényi divergence, has become popular for its mathematical properties [Mironov, 2017].
Definition 1 (Rényi Differential Privacy). A randomized algorithm A satisfies (α, ε)-RDP for
α > 1 and ε > 0 if Dα (A(x)||A(y)) ≤ ε for all pairs of neighboring datasets x ∼ y, where
Dα (A(x)||A(y)) is the α-Rényi divergence between A(x) and A(y).
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A fundamental building block for designing a private algorithm A is the Gaussian Mechanism
(GMσ) [Dwork et al., 2006, 2014], which adds Gaussian noise to the private value R(x):

GMσ(R)(x) = R(x) +N(0, σ2), for some σ2 > 0 . (1)

It is very common (e.g., in machine learning) to compose multiple calls to GMσ to build iterative
algorithms like differentially private gradient descent [Song et al., 2013, Bassily et al., 2014]. RDP is
able to tightly track the privacy guarantees of (compositions of) GMσ , and can be converted into the
more classical (ϵ, δ)-DP variant [Mironov, 2017].

The noise scale σ2 of GMσ is based on an L2 sensitivity assumption, which guarantees that for any
neighboring inputs x ∼ y, the query R verifies:

∥R(x)− R(y)∥2 ≤ R2
abs (2)

for some Rabs > 0. In particular, for σ2 =
αR2

abs

2ε , GMσ(R)(x) satisfies (α, ε)-RDP. It is thus
crucial to estimate the L2 sensitivity precisely to achieve the best possible privacy-utility trade-off.
Unfortunately, this Rabs constant is often not directly known and difficult to bound tightly. In some
cases, the distance between outputs is also highly correlated to the norm of these outputs, and this is
the case in particular when the outputs depend on a non-private latent variable.

Consider for instance an institute that would like to assess the mean salary for different jobs in a
given company. Individual salaries are sensitive information, but people’s job is not secret, and the
average salary per job is the desired output. If we were to use the standard Gaussian Mechanism, then
we would need an absolute sensitivity bound of the form of (2) (note that other types of noises, such
as Laplace, would require similar bounds in other norms, such as L1, but the absolute aspect would
remain). To do this, the simplest approach is to use a bound on the maximum possible salary across
all jobs in the company. However, this is not satisfactory since results for lower-paid jobs would be
dominated by noise. An alternative is to restrict the neighboring relation to people that have the same
job, which is possible since the job is not private. The problem is that estimating the salary per job
(or a bound on it) is exactly what we would like to achieve in the first place. In this case, absolute
sensitivity bounds are thus unsatisfactory, and would lead to unnecessarily high, as well as unfair
(since the precision would be higher for well-paid jobs) estimates of the mean salary per job. Now
consider that we know that by law, there should not be more than 10% variations in salary for a given
job in a given company: this corresponds to a relative sensitivity assumption. In this case, one is
tempted to calibrate the noise to the empirical mean salary for a given job, since we know that all
the people with the same job in this company have comparable salaries. In this paper, we tightly
characterize how to scale the noise under this relative sensitivity assumption, leading to precise
and fair estimates of the mean salaries per job. Note that this simple example directly translates for
instance to releasing gradients, where the job would be the point at which they are computed and the
salary would be their magnitude.

Our contributions are the following: (i) We introduce the Relative L2 Sensitivity, which generalizes
the standard L2 sensitivity by allowing the upper bound to depend on the norm of queries. (ii) We
leverage this assumption to introduce the Relative Gaussian mechanism (RGM), in which the noise
that we introduce depends on the output that we are about to release. (iii) We show tight privacy
guarantees for the Relative Gaussian Mechanism. (iv) We show how the Relative Gaussian mechanism
can be applied for Private Gradient Descent to provide adaptivity to the gradients’ magnitude.

We first review related work in Section 2. We then define the Relative L2 Sensitivity in Section 3,
and introduce RGM in Section 4. Finally, we instantiate the results for gradient descent on quadratics
in Section 5, and present some corresponding numerical illustrations in Section 6.

2 Related work

Local sensitivity. Several classic techniques in the DP literature seek to avoid the calibration
of noise to global sensitivity by relying on the notion of local sensitivity. The local sensitivity
LSR(x) = maxy:y∼x ∥R(x)− R(y)∥ of a dataset x measures how much R(y) can differ from R(x)
for any neighbor y of x, which can be much smaller than the global sensitivity. In general however,
calibrating the noise to the local sensitivity does not provide privacy, as two neighboring datasets
may have very different local sensitivities. To go around this issue, previous work has proposed
approaches based on smoothing the local sensitivity [Nissim et al., 2007], or proposing and privately
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testing the validity of a local sensitivity bound before releasing the output [Dwork and Lei, 2009].
Our assumption of bounded relative sensitivity is related to local sensitivity, in the sense that it
implies that neighboring datasets have similar local sensitivities (see Section 3 for details). However,
our framework does not seek to reduce the noise compared to approaches based on (a tight bound
on) global sensitivity, but instead address situations where (i) the scale of R(x) (and thus the global
sensitivity) is not known in advance for the dataset x of interest, for instance because it depends
on a latent variable (like the job type in the example of Section 1, or the distance to the optimum
in gradient descent), and (ii) for any x ∼ y, ∥R(x) − R(y)∥ can be approximately bounded by a
constant factor times ∥R(x)∥. In this context, RGMγ,σ naturally adapts to the latent variable, while
our bounded relative sensitivity assumption ensures that it satisfies differential privacy.

Beyond absolute sensitivity. In some cases, absolute sensitivity can be high due to the presence
of outliers. Tsfadia et al. [2022] proposed an algorithm to refine an absolute sensitivity bound by
privately discarding outliers. Brunel and Avella-Medina [2020] goes further and uses distributional
assumptions to privately estimate queries whose absolute sensitivity is unbounded. The main
drawback of their method is that, in unfavorable cases, the algorithm may stop without returning
anything. In contrast to these methods, our relative Gaussian mechanism always returns a value,
without relying on an absolute sensitivity bound. Instead, it uses a relative sensitivity assumption,
that does not require the absolute sensitivity to be bounded.

Private gradient descent. Differentially private gradient descent (DP-GD) and its stochastic variant
(DP-SGD) were first proposed by Song et al. [2013]. These algorithms and further variations have
been widely studied as private minimizers of the empirical risk [Song et al., 2013, Bassily et al., 2014,
Wang et al., 2017], and of the population risk [Bassily et al., 2019, Feldman et al., 2020]. All these
algorithms have been formally shown to achieve the optimal utility derived by Bassily et al. [2014].
The analysis crucially relies on an absolute L2 sensitivity bound on the gradients (typically obtained
by assuming the loss function to be Lipschitz) to calibrate the noise. Unfortunately, this often leads to
the injection of excessive amounts of noise. Abadi et al. [2016b] proposed a more practical version of
DP-SGD (implemented notably in PyTorch Opacus [Yousefpour et al., 2021] and TensorFlow Privacy
[Abadi et al., 2016a]) which uses gradient clipping to reduce gradients’ L2 sensitivity. Similarly, Asi
et al. [2022] reduced this sensitivity using a clipping-like procedure. In both cases, this decrease in
L2 sensitivity introduces bias in the computation [Amin et al., 2019]. This phenomenon makes the
analysis of clipped algorithms significantly harder [Chen et al., 2020, Yang et al., 2022, Koloskova
et al., 2023], and it is difficult to choose a constant clipping threshold without tuning an additional
hyperparameter. Pichapati et al. [2019] and Andrew et al. [2021] proposed heuristic methods for
chosing clipping thresholds adaptively, although without theoretical guarantees and with limited
practical applicability. Our method can reduce the amount of injected noise, while circumventing the
difficulty of setting a proper clipping threshold. Indeed, our relative sensitivity assumption allows the
design of a relative Gaussian mechanism where noise naturally adapts to the gradients’ norms. Unlike
clipped DP-GD, the convergence analysis of DP-GD using our mechanism is very similar to the one
of DP-GD without clipping (see Section 5), while allowing to reduce noise injection. In problems
that do not fit our relative sensitivity assumption, we also propose a “clipping-like” procedure, which
enforces a bound on the relative sensitivity under mild statistical assumptions.

3 Relative L2 sensitivity

As discussed in the introduction, we start by relaxing the restrictive L2 sensitivity assumption.

Definition 2 (Relative L2 sensitivity). An algorithm A satisfies Relative L2 sensitivity if there exists
constants η > 0 and Rrel > 0 such that for any two neighboring inputs x ∼ y:

∥R(x)− R(y)∥2 ≤ η2 ∥R(x)∥2 +R2
rel. (3)

Note that by symmetry, this is equivalent to ∥R(x)− R(y)∥2 ≤ η2 min(∥R(x)∥2 , ∥R(y)∥2) +R2
rel.

Besides, we recover the standard L2 sensitivity for η = 0.

Examples. This definition is particularly useful when we know relative or multiplicative bounds on
inputs. As discussed earlier, this can be the case if we would like to estimate salaries for a given job,
and we know that all the people we consider have salaries within 10% of each other (for instance
because it is imposed by the law). We would need to know salary estimates for each job to guess
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the appropriate absolute sensitivity R2
abs (or use a very imprecise global one for all jobs), whereas

knowing the law directly gives us η = 0.1 and Rrel = 0.

In this case, the salaries are directly correlated to a latent variable: the jobs. This is also the case for
gradients, whose norm depend on the point at which they are computed. The absolute L2 sensitivity
would write ∥∇f(θ)−∇f ′(θ)∥2 ≤ Rabs(θ)

2, where f and f ′ are objective functions computed on
neighboring datasets. Therefore, we would either need to (i) know Rabs(θ) for all values of θ, which
is a lot of information, or (ii) bound it uniformly, which can be very loose. In contrast, Relative L2
sensitivity can ensure ∥∇f(θ)−∇f ′(θ)∥2 ≤ η2 ∥∇f(θ)∥2 +R2

rel with tight absolute (independent
of θ) parameters η and Rrel, see Section 5 for more details.

Links to local sensitivity. As discussed in the related work section, the motivating idea behind
local sensitivity [Nissim et al., 2007] is to set the noise according to the bound on the distance
between the specific output we would like to protect and all neighboring ones. This allows much
lower noise in general, since some outputs might have small sensitivity. Yet, this does not guarantee
differential privacy as the level of noise injected gives information about the input that is released, as
two neighboring inputs might have very different local sensitivities.

Note that Definition 2 actually bounds the local sensitivity, since the bound depends on the inputs
that we consider. It is stronger however, as we can show that the variations of the local sensitivity
induced by the relative sensitivity for two neighboring inputs are bounded. Said differently, due to its
symmetry, relative L2 sensitivity also ensures that two neighboring inputs also have comparable norms,
and so comparable local sensitivities. As we will see in the remainder of this paper, Definition 2
will allow privacy guarantees to hold even though the norm of the input is partly revealed through
the noising process via the local sensitivity. In particular, we will show that Definition 2 can be
leveraged to release information privately even when Rrel ̸= 0, and with no additional information.
Our framework thus highlights an interesting example in which a form of local sensitivity can be
used while still ensuring Differential Privacy.

4 The Relative Gaussian mechanism

4.1 Mechanism and privacy guarantees

We now present our central contribution, the Relative Gaussian Mechanism (RGMγ,σ), and derive its
privacy guarantees. RGMγ,σ extends GMσ to queries that satisfy relative sensitivity. It leverages
relative sensitivity to guarantee privacy while adapting the scale of the noise to the norm of the query.
Definition 3 (Relative Gaussian Mechanism). Let γ > 0 and σ > 0. The Relative Gaussian
Mechanism of parameters (γ, σ) is defined as:

RGMγ,σ(R)(x) = R(x) +N(0, γ ∥R(x)∥2 + σ2) . (4)

RGMγ,σ generalizes the standard GMσ , as we recover it by setting γ = 0. When γ > 0, it controls
to which extent R(x)’s norm is used to set up noise. Note that σ2 is a baseline noise, which allows to
handle inputs where the query’s output has small norm. For instance, if R(x) = 0 on some input x,
and R(y) ̸= 0 on an input y ∼ x, this baseline noise is necessary to guarantee privacy.

We show that, although RGMγ,σ uses the query output to calibrate the noise, it can still guarantee
privacy. This perhaps surprising result follows from the relative sensitivity assumption. Intuitively,
this assumption ensures that all neighboring outputs have comparable norms, resulting in comparable
levels of noise. The next theorem formalizes this intuition, deriving tight privacy guarantees for
RGMγ,σ on queries that satisfy a relative L2 sensitivity assumption.

Theorem 1 (Privacy guarantees of RGMγ,σ). Let R : D → Rd be a query that verifies (η,Rrel)-
relative L2 sensitivity (Definition 2) for some η ≤ 1 and Rrel ≥ 0. Then for 1 ≤ α < (1 + η)2/(2η+
η2), and σ2 ≥ γη−2 [1− η(α− 1)]R2

rel, RGMγ,σ(R) satisfies (α, ϵ)-Rényi-DP with

ϵ =
αη2

2γ

[
1

1− η(α− 1)(2 + η)
+ γd(2 + η)2

]
. (5)

The proof is mostly technical, we thus defer it to Appendix A. Theorem 1 shows that RGMγ,σ can
provide meaningful privacy guarantees. For a fixed γ, the guarantee is as strong as η2 is small. This is
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in line with the intuition presented above: when η2 is small, R(x) and R(y) (for x ∼ y) have similar
norms, and these norms are less sensitive.

Scale of the noise. The scale of the noise is controlled by the parameter γ. Indeed, for a fixed γ, our
result suggests to set the baseline variance as σ2 = γη−2(1− η(α− 1))R2

rel. As such, small values
of γ will lead to small noise addition (both in the baseline and the relative term), but will decrease
privacy guarantees. Conversely, higher values of γ require more noise for better privacy guarantees.

Arbitrary privacy guarantees cannot be achieved. Although the parameter γ controls the level
of the privacy guarantee, not all values of α and ϵ are achievable. This is in stark contrast with the
classical GMσ (η = 0), where increasing the noise σ always improves privacy. This discrepancy
is due to the fact that scaling noise with ∥R(x)∥ already releases some information about the input.
Sadly, this information cannot be privatized using more baseline noise σ2 without a priori bounds on
∥R(x)∥. Nonetheless, we emphasize that when η → 0, all values of α and ϵ are possible.

Theorem 1 implies that ϵ ≥ 2αη2d, where d is the dimension of the output of R. Consequently,
RGMγ,σ is more likely to give good privacy guarantees on small-dimensional queries. Note that this
is tight, as discussed below. To mitigate this issue, one can either (i) restrict the query to a subset of
its coordinates, or (ii) adapt the query to decrease the value of η (see discussion in Section 5.3).

Conversion to (ϵ, δ)-DP. Using Proposition 3 of Mironov [2017], we can convert the RDP guarantee
given in Theorem 1 to classical DP. For clarity of discussion, we give a closed-form expression of the
differential privacy guarantees for the Relative Gaussian Mechanism in Corollary 1. We stress that
better guarantees can be obtained by numerically optimizing the bound obtained from Proposition 3
of Mironov [2017], and provide a script to choose the best values of α and γ in the supplementary.
Corollary 1 (Conversion to (ϵ, δ)-DP). Let 0 ≤ δ ≤ 1. We assume that γ−1 ≥ 4(2 + η)2 log(1/δ)
or that d ≥ 8 log(1/δ), and use the same notations as in Theorem 1. Then, RGMγ,σ satisfies
(ϵ, δ)-differential privacy with parameter ϵ = χ+ 2

√
χ log(1/δ), where χ = η2

γ + 1
2η

2(2 + η)2d.

We prove this result in Appendix A.5. While this result does not allow arbitrary privacy guarantee, we
stress that meaningful guarantees can still be achieved. For instance, if η = 1e-3, d = 10, δ = 1e-8,
and γ = 100η2, the Relative Gaussian mechanism guarantees (ϵ, δ)-DP with ϵ ≈ 0.86.

4.2 Privacy Loss and Comparison with the Gaussian Mechanism

Let us consider that we use the relative sensitivity as a local sensitivity to set the noise level for
disclosing output A(x). In this case, guaranteeing (α, ε⋆)-Rényi-DP when releasing output A(x)

requires setting the noise as σ2
abs =

α
2ε⋆

(η2 ∥R(x)∥2 + R2
rel). Unfortunately, as explained before,

local sensitivity does not guarantee differential privacy. If we were to use the same level of noise
in the Relative Gaussian mechanism, this would correspond to γ = αη2

2ε⋆
, and σ2 = γη−2R2

rel. In
particular, Theorem 1 tells us that this choice actually guarantees RDP with parameter:

ε =
ε⋆

1− η(α− 1)(2 + η)
+

αd

2
η2(2 + η)2 (6)

The first term corresponds to the target privacy level ε⋆, weighted by a factor which is bounded by 2
as long as 6η(α− 1) ≤ 1, and goes to 1 as η decreases (for a fixed α). The second term corresponds
to the privacy loss incurred by using the norm of the current output to set the noise level. Note that
we see from Theorem 1 that this term is independent of γ and σ2: it corresponds to a baseline loss
that is paid for using a local form of sensitivity. We would get rid of this term if all possible queries
R(x) had the same norm, and this norm was public. However, this is a very strong assumption that
generally does not hold (or requires very high absolute sensitivity bounds R2

abs). Note that it is
tempting to use another output R(y) to set the noise level, and thus decorrelate the noise level from
the specific input that we consider. However, R(y) would not be independent from R(x) since x ∼ y.

This privacy loss term explains why using arbitrary large γ does not lead to arbitrary good privacy
guarantees. However, as long as η is small enough compared to α, the privacy loss is purely additive.
This means that if the dimension d is not too large (d ≤ γ−1/9, more for small η), we are safe using
the relative Gaussian mechanism with minimal privacy overhead. Note that the d term comes from
the fact that we use Gaussian noise, and other noise distributions might incur other dependencies.
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Standard vs. Relative Gaussian Mechanism. This “privacy loss” point of view allows us to
reason about the noise introduced by the Relative Gaussian Mechanism, versus the standard one.
Indeed, let us neglect the additive privacy loss term. In this case, as argued in the previous paragraph,
the privacy guarantees are comparable to the standard Gaussian mechanism with local sensitivity
η2 ∥R(x)∥2 + R2

rel. In particular, which mechanism yields the best utility (less noise for a given
privacy level) depends on which sensitivity bound is the tightest. If R2

abs ≥ η2 maxx ∥R(x)∥2 +R2
rel

then the relative Gaussian mechanism is always better, because it will lead to similar guarantees with
less noise overall. Otherwise, some outputs might be noised more with one mechanism and less with
another. This is highly application-specific, as it is conditioned by the structure of the outputs.

Tightness. One natural question that arises is the tightness of Theorem 1. Due to the parallel with
local sensitivity, the first term is tight up to the (usually small) multiplicative factor. The second term
is also tight up to a factor 1/2 in the limit of small η, thanks to the tightness of the inequality used to
obtain it. We discuss this in Appendix A.4.

5 The special case of gradient descent

An important application of RGMγ,σ is private gradient descent. In this section, we describe it in the
quadratic case, for which we estimate the values of η and Rrel and propose a clipping-like procedure.

5.1 Gradient descent under relative sensitivity assumptions

In this section, we consider a function f : Rd × D → R, where D is a set of possible datasets.
Assume that the gradients of f (w.r.t. its first parameter) verify the relative sensitivity assumption.
Given a dataset D ∈ D, we can then privately minimize this function using the following private
gradient descent algorithm, where γ, σ > 0 are parameters of the RGM, and τ > 0 is a step size:

θt+1 = θt − τRGMγ,σ(Rθt)(D) where Rθt(D) = ∇f(θt;D) . (7)

We remark that the form of RGMγ,σ’s noise allow a tight analysis of the utility, as shown below.

Theorem 2. Let f : Rd ×D → R be µ-strongly-convex and L-smooth in its first parameter (see,
e.g., Nesterov et al. [2018]). Let D ∈ D be a dataset, and θ⋆ be the minimizer of f(·;D). Assume
that f ’s gradients satisfy (η,Rrel)-relative sensitivity, and that γ, σ are set as in Theorem 1. Then if
τ ≤ (L+ γ)−1, the iterates obtained by (7) satisfy, for all t ≥ 0,

E
[
∥θt − θ⋆∥2

]
≤ (1− τµ)t ∥θ0 − θ⋆∥2 +

τσ2

µ
. (8)

The proof, along with a similar result in the general convex case are in Appendix B.1. The key
observation is that the progress towards θ⋆ is proportional to ∥∇f(θt;D)∥2, so it can compensate
the norm-scaled noise term, and only requires slightly decreasing the step size (we recall that γ is
typically small). Contrary to the usual DP-GD, which privatizes gradients using GMσ , the variance
term is τσ2

µ , where σ2 now depends on Rrel which can be much smaller than the absolute sensitivity.
In the remainder of this section, we exhibit settings in which the gradients verify relative sensitivity.

5.2 Relative L2 sensitivity for linear regression

We now consider the specific case of quadratic objectives. More specifically, f is of the form

f(θ;X, y) =
1

2n

∥∥X⊤θ − y
∥∥2 + µreg

2
∥θ∥2 =

1

n

n∑
i=1

1

2

∥∥X⊤
i θ − yi

∥∥2 + µreg

2
∥θ∥2 , (9)

where X ∈ Rd×n and y ∈ Rn. We denote by (Xi, yi) ∈ Rd × R the i-th data record (i.e., the i-th
column of X and i-th element of y). Let (X ′, y′) ∼ (X, y) be a dataset that, w.l.o.g, only differs
from (X, y) on its first record (X0, y0). In the following, we denote f = f(·;D) and f ′ = f(·;D′).

Let Id ∈ Rd×d be the identity matrix and let us denote A = 1
nXX⊤ + µregId ∈ Rd×d, Ai =

XiX
⊤
i ∈ Rd×d, b = 1

nXy ∈ Rd, and bi =
1
nXiyi ∈ Rd (and similarly for A′ and b′). Then for
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θ ∈ Rd, ∇f(θ) = Aθ − b and ∇f ′(θ) = A′θ − b′. The difference between two gradients is

∥∇f(θ)−∇f ′(θ)∥2 =
1

n2
∥(A0 −A′

0)θ − b0 + b′0∥
2

=
1

n2

∥∥(A0 −A′
0)A

−1(Aθ − b) + (A0 −A′
0)A

−1b− b0 + b′0
∥∥2

≤ 3

n2

[∥∥A0A
−1
∥∥2 + ∥∥A′

0A
−1
∥∥2] ∥∇f(θ)∥2 + 3

n2

∥∥∇f0(A
−1b)−∇f ′

0(A
−1b)

∥∥2 ,
with ∥A∥ = λmax(A) being the 2-norm for matrices. This bound hints at relative sensitivity, and we
now discuss the corresponding η and Rrel terms. We first define L, µ > 0 the bounds on the largest
and smallest eigenvalues of all A, i.e., L ≥ ∥A∥, and µ ≤ λmin(A). Then, denote κ = L/µ.

The relative term η. The first term that we notice is ∥A0A
−1∥, which can be naively bounded as

∥A0A
−1∥2 ≤ maxi ∥Ai∥2/µ2. However, this term can also be bounded as:∥∥A0A

−1
∥∥2 = ∥X0∥2 X⊤

0 A−2X0 ≤ κ
(
X⊤

0 A−1X0

)2
. (10)

Therefore, it suffices to have X⊤
0 A−1X0 ≤ Lrel for some Lrel (and same for X ′

0), which corresponds
to point X0 belonging to the ellipse defined by A−1 and of radius Lrel. We remark that in most cases,
Lrel does not depend on the conditioning of A. Thus, A can be highly ill-conditioned, while Lrel

remains small. Depending on the distribution of X0, ∥X0∥2 X⊤
0 A−2X0 can also be bounded directly

in a tighter way. We now discuss two examples in which we can reasonably control ∥A0A
−1∥2 in a

tight way, accentuating the relevance of this relative bound.

1 - Orthogonal data. Relative sensitivity can be easily bounded for orthogonal data, i.e. if ei-
ther X⊤

i Xj = ∥Xi∥2 or X⊤
i Xj = 0. Consider that at least half of the dataset is fixed, and

contains all different Xi in equal proportions (so, d−1). In this case, A ≽ 1
2d

∑d
i=1 XiX

⊤
i so

∥Xi∥2 X⊤
i A−2Xi ≤ 2d. Note that the relative sensitivity is independent of the scale of each Xi. See

Appendix B.3 for more detailed derivations.

2 - Gaussian data. If the data is Gaussian, then with sufficient regularization X⊤
0 A−1X0 ≤ Lrel with

Lrel independent of the covariance of the data.

Proposition 1. If the columns of X are drawn i.i.d from N(0,Σ), and we set the regularization
as µreg = c ∥Σ∥2

√
[deff + ln(d) + ln(2δ−1)]/n then relative sensitivity is satisfied with η2 =

c′κ(d/n)2 log(2n/δ)2 with probability at least 1− δ, where c, c′ > 0 are small absolute constants,
κ is the condition number of Σ and deff ≤ d is the effective dimension of Σ.

The proof and details can be found in Appendix B.4. In this case, δ corresponds to a catastrophic
failure mode: the assumptions are not verified, and so the privacy guarantees do not hold.

The absolute term Rrel. By using the relative framework, we have gone from having to bound the
difference between gradients at all points to only having to bound it at A−1b, the rest being handled
by the norm scaling. When an approximation of A−1b is known, this gives much tighter guarantees.
Otherwise, this term writes:

∥∥(A0 −A′
0)A

−1b− b0 + b′0
∥∥ ≤

∥∥(A0 −A′
0)A

−1
∥∥ ∥b∥+∥b0 − b′0∥. In

the end, one only needs to control the norm of b and b0 − b′0, which can be done via clipping.

General functions. All derivations above consider quadratic objectives. Yet, similar terms with
corresponding intuitions can be derived for arbitrary convex functions, as presented in Appendix B.2.

5.3 Enforcing relative L2 sensitivity

In practical applications that do not verify relative sensitivity per se, we may want to enforce it, like
clipping does for absolute sensitivity. In the quadratic case, the absolute term Rrel can be controlled
by clipping the bi’s. Yet, we should also enforce that

∥∥(A0 −A′
0)A

−1
∥∥ ≤ η, which could be done

by writing A ≽ µregId, then clipping the Ai’s so that ∥Ai∥ ≤ cA. In the end, we would obtain
∥A0A

−1∥ = cA/µreg. However, this bound can be quite loose, since it does not leverage relative
assumptions between A0 and A−1. The following generic assumption can give a tighter bound.
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Assumption 1. There is a matrix C ∈ Rd×d, a threshold Rc, and a regularization µreg such that
for any dataset X ∈ Rd×n, there is a set of points IC such that IC ⊂ {i, ∥Xi∥2 X⊤

i C−2Xi ≤ R4
c},

|IC | ≥ ωn for some ω > 0, and AC = 1
|IC |

∑
i∈IC

XiX
⊤
i + µregId ≽ ρC for some ρ > 0.

This assumption states that we know a matrix C, a threshold Rc and a regularization µreg such that,
regardless of the specific dataset instance, if we “clip” the points that are not in IC (e.g., drop them,
or reduce their norm them to meet the condition to be in IC): (i) a constant fraction of points will
not be clipped, (ii) the regularized covariance of the non-clipped points is lower bounded by ρC,
for some ρ > 0 that is independent of the dataset. Intuitively, this means that although we do not
know the specific points in the dataset, we know a bound on their covariance. Interestingly, using any
C ̸= Id in Assumption 1 helps obtain better values of η as long as ρ/ ∥C∥ > µreg. Thus, even loose
estimates of the covariance can be used: combining this assumption with RGM is therefore a good
way to leverage expert knowledge on the matrix C to reduce noise. In the absence of such knowledge,
C could also be estimated using a public subset of the Xi’s. Another implication of Assumption 1 is
that relative sensitivity can be enforced by a clipping-like procedure, that we describe below.

Proposition 2 (Clipping). Let Assumption 1 hold, with (C,Rc) the corresponding matrix and
threshold. Let X̃ be the clipped dataset, obtained as X̃i = RcXi/max(Rc, (∥Xi∥2 X⊤

i C−2Xi)
1
4 ).

Then, X̃ verifies the relative sensitivity assumption with constant η =
6R4

c

ω2ρ2n2 .

The proof can be found in Appendix B.5. We refer to this procedure as “clipping” since relative
sensitivity is enforced by shrinking the norm of the Xi when they are too large. Note that the privacy
guarantees in this case are quite underestimated: we consider that points that are clipped are just
discarded and put to 0, whereas in reality they also contribute to the covariance. Actually discarding
these points would allow to get rid of the ω2 factor at the cost of more bias in the dataset. Importantly,
the clipping only depends on C, and is independent of the other points in the dataset. This is crucial
as it preserves the property that datasets that only differ in one sample still do after clipping (which
would not be the case if clipping using A−1).

Similarly to the bound on η, we show in Proposition 3 that an alternative formulation of Assumption 1
is verified for Gaussian features where C is the covariance of the underlying Gaussian distribution.
This means that we expect this kind of clipping to work well when the data “looks Gaussian”.

Proposition 3. Let X ∈ Rd×n such that its columns Xi are drawn i.i.d. from N(0,Σ). Let IC
be such that IC ⊂ {i, X⊤

i Σ−1Xi ≤ R2
c}. Let δ > 0 and n ≥ 4 log(2d/δ)/9. Then, with

probability at least 1 − 3δ, |IC | ≥ ωn with ω = p(χ2(d) ≤ R2
c) −

√
log(δ−1)/2n, and AC =

1
|IC |

∑
i∈IC

XiX
⊤
i + µregId ≽ ρC for some ρ > 0 that only depends on Rc and regularization

µreg = 4 ∥Σ∥R2
c

√
log(2d/δ)

n . In particular, dropping the i /∈ Ic leads to η =
6R4

cκ
ρ2n2 .

The proof can be found in Appendix B.6. Note that it is generally simpler to check the condition
X⊤

i C−1Xi ≤ R2
c rather than ∥Xi∥2 X⊤

i C−2Xi ≤ R4
c , as is for instance the case for Gaussian data.

This is why Proposition 3 uses the first condition instead of checking Assumption 1, but arrives to a
result comparable to Proposition 2 by leveraging (10).

We can then compare the result with that of Proposition 1, by setting R2
c = O(d) (since E

[
χ2(d)

]
=

d). We obtain that if we know the covariance Σ of the Gaussian distribution from which the data is
sampled, then we can perform clipping and replace the O(log(n/δ)) term by constant terms. This is
because, thanks to clipping, we do not have to increase Lrel to include potential outliers.

6 Experiments: distributed training under local DP

We have presented several ways of estimating or enforcing the relative sensitivity parameters in the
previous section. Yet, they require inverting an approximation of the covariance of the data, which
may be computationally expensive. Nonetheless, an interesting use-case for the Relative Gaussian
Mechanism is distributed training in the local model of differential privacy. Several nodes participate
in a global training procedure, minimizing a shared objective. To this end, they periodically exchange
(private) gradients, and the key bottleneck is thus communication. We remark that privatizing
gradients is a local procedure, that each node completes on its own. In particular, it is reasonable

8



0 10 20 30 40
Iteration number

10 3

10 2

10 1

f(x
) -

 f*

0 10 20 30 40
Iteration number

10 3

10 2

10 1

100

f(x
) -

 f*

0 10 20 30 40
Iteration number

101

102

103

f(x
) -

 f*

Relative
No noise
Clipped high
Clipped
Clipped low

Figure 1: Utility of several private gradient descent algorithms with equivalent RDP guarantees.
(Left): ‘Random’, (Middle): ‘label’, (Right): ‘bias’. Shaded areas are min/max values over 3 runs.

to assume here that nodes can locally and efficiently estimate (η,Rrel) without having to solve the
global optimization problem (which would require communication).

We argue that, contrary to the RGMγ,σ , it is impossible to effectively use the GMσ without knowledge
from other nodes. To illustrate this, consider the simple example where two nodes have respective
objectives f1(θ) = α ∥θ∥2, and f2(θ) = β ∥θ − b∥2. There, the sensitive records to keep private
are α ∈ [αmin, αmax] and β ∈ [βmin, βmax]. Both nodes can easily compute their local parameters
η1 = αmin/αmax, η2 = βmin/βmax, and Rrel = 0. Then, they can directly use the RGMγ,σ.
Consider now that nodes use GMσ with gradient clipping instead, and that for this particular instance,
α = β = 1. In order not to bias the objective, the clipping threshold for node 1 would need to be
set to a least ∥b∥, which is equal to the norm of the gradient of f1 evaluated at the global optimum.
However, node 1 has no knowledge of b, and has thus no way of setting a relevant clipping threshold
without exchanging information with node 2. In this simple illustrative example, it would of course
be enough to just exchange an approximation of b, which has a reasonable cost. Nonetheless, this
highlights that setting a relevant clipping threshold in general requires knowledge of the solution to
the global problem, which is generally unavailable as it depends on all nodes’ data.

We illustrate this with linear regression experiments on the ijcnn1 dataset [Chang and Lin, 2001]
(concatenation of train and test from LibSVM repository1), so the total N = 141691, and d = 22.
We consider ridge linear regression, so f is of the form of (9) where the yi correspond to the binary
classification labels. We set the regularization parameter µreg = 0.03, and RDP parameters α = 2
and ε = 0.1. In order to avoid having to decide a clipping threshold for GMσ, we automatically
set the threshold as the maximum of the individual stochastic gradients at optimum (to avoid bias).
We also run experiments with chigh = 10c (‘Clip high’) and clow = c/10 (‘Clip low’). We compare
this to vanilla gradient descent without noise and RGMγ,σ , where the η parameter is approximated
using (10). The results are shown in Figure 1. Code is available in supplementary material, and the
precise experimental details can be found in Appendix C.

We study 3 different data splits: (i) ‘Random’ (left plot): the data is split randomly across the two
nodes. (ii) ‘label’ heterogeneity (center): we sample 50 points at random for each node, and then all
positive labels are assigned to one node and all negative to the other. (iii) ‘bias’ (right): we add a bias
B to the objective to recreate (with more complex data) the simple example discussed above.

We observe that, although there is generally always a clipping threshold that works well, this
threshold is problem-dependent. Small thresholds work well for homogeneous objectives or with
label heterogeneity, whereas larger clipping thresholds handle bias heterogeneity better. Therefore,
the clipping threshold needs to be tuned, which requires more communication, and incurs additional
privacy leaks. On the contrary, the Relative Gaussian mechanism is, in this case, able to deal with
heterogeneity without such tuning.

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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7 Conclusion

We introduced the relative L2 sensitivity, a generalization of the usual L2 sensitivity which depends
on the norm of the query. We designed the Relative Gaussian mechanism (RGMγ,σ), a mechanism
that exploits this sensitivity assumption to adapt the level of noise to the norm of the query R(x), and
proved tight privacy guarantees. We then applied RGMγ,σ to private gradient descent and proposed
a clipping-like procedure to enforce the relative L2 sensitivity under some statistical assumptions.
An exciting and challenging direction is to generalize the relative L2 assumption and RGMγ,σ to
sub-sampled queries, and apply them to private stochastic gradient descent. We also note that relative
L2 sensitivity could be further refined by measuring it in other norms, possibly in combination with
the use of other noise distributions.
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Appendix
The appendix is organized as follows. Section A contains the full proofs for the general RGMγ,σ,
and in particular Theorem 1. Section B contains the proofs for the results that justify using rela-
tive assumptions when minimizing quadratics, and Section C contains the detailed experimental
setting, with all the elements needed to reproduce the experiments. The code itself can be found in
supplementary material.

A Proofs for the Relative Gaussian Mechanism

A.1 Bounding the noise scale ratio

We start by the following simple lemma, that will allow us to bound the domain of admissible α.

Lemma 1. If σ2 ≥ γ(1+η−1)
2η+η2 R2

rel, then (1 + η)−2 ≤ γ∥R(x)∥2+σ2

γ∥R(y)∥2+σ2 ≤ (1 + η)2.

Proof.

γ ∥R(x)∥2 + σ2

γ ∥R(y)∥2 + σ2
=

γ ∥R(y) + R(x)− R(y)∥2 + σ2

γ ∥R(y)∥2 + σ2

≤ γ(1 + η) ∥R(y)∥2 + γ(1 + η−1) ∥R(x)− R(y)∥2 + σ2

γ ∥R(y)∥2 + σ2

≤ γ(1 + η) ∥R(y)∥2 + γ(1 + η−1)(η2 ∥R(y)∥2 +R2
rel) + σ2

γ ∥R(y)∥2 + σ2
.

The result then follows from using the bound on σ2 to factor γ ∥R(y)∥2 + σ2 in the numerator. The
other side (lower bound) is obtained by inverting R(x) and R(y).

A.2 Rényi divergence of two Gaussians

Recall that for α > 1 and two distributions, P and Q, the Rényi divergence is

Dα(P ||Q) =
1

α− 1
log

∫
P (x)α

Q(x)α
dQ(x) =

1

α− 1
log

∫
P (x)α

Q(x)α−1
dx .

Lemma 2. Let P and Q be Gaussian distributions of dimension d centered in µ1 and µ2 with
variance σ2

1 and σ2
2 . Then, assuming that ασ2

2 + (1− α)σ2
1 > 0,

Dα(P ||Q) =
α ∥µ1 − µ2∥2

2(ασ2
2 + (1− α)σ2

1)
+

d

α− 1
log

(
σ1−α
1 σα

2√
ασ2

2 + (1− α)σ2
1

)
. (11)

Remark that when σ1 = σ2, we recover the divergence of the standard Gaussian mechanism.

Proof.

Dα(P ||Q) =
1

α− 1
log

√
σ
2d(α−1)
2

(2π)dσ2dα
1

∫
exp

(
−α ∥u− µ1∥2

2σ2
1

− (1− α) ∥u− µ2∥2

2σ2
2

)
du .

We first compute the one-dimensional integral∫ +∞

−∞
exp

(
−α(u− µ1)

2

2σ2
1

− (1− α)(u− µ2)
2

2σ2
2

)
=

∫ +∞

−∞
exp

(
−
(

α

2σ2
1

+
1− α

2σ2
2

)
u2 +

(
αµ1

σ2
1

+
(1− α)µ2

σ2
2

)
u− αµ2

1

2σ2
1

− (1− α)µ2
2

2σ2
2

)
=

∫ +∞

−∞
exp

(
−
(
ασ2

2 + (1− α)σ2
1

2σ2
1σ

2
2

)
u2 +

(
αµ1σ

2
2 + (1− α)µ2σ

2
1

σ2
1σ

2
2

)
u− αµ2

1σ
2
2 + (1− α)µ2

2σ
2
1

2σ2
1σ

2
2

)
.
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Now, since
∫ +∞

−∞
exp(−(au2 + bu+ c))du =

√
π

a
exp

( b2
4a

− c
)

, we have after simplification, and

assuming ασ2
2 + (1− α)σ2

1 > 0,∫ +∞

−∞
exp

(
−α(u− µ1)

2

2σ2
1

− (1− α)(u− µ2)
2

2σ2
2

)
=

√
2πσ2

1σ
2
2

ασ2
2 + (1− α)σ2

1

exp

(
−α(1− α)(µ1 − µ2)

2

2(ασ2
2 + (1− α)σ2

1

)
=

√
2πσ1σ2√

ασ2
2 + (1− α)σ2

1

exp

(
−α(1− α)(µ1 − µ2)

2

2(ασ2
2 + (1− α)σ2

1

)
.

Back to our divergence, we obtain

Dα(P ||Q) =
1

α− 1
log

√ σ
2d(α−1)
2

(2π)dσ2dα
1

d∏
j=1

√
2πσ1σ2√

ασ2
2 + (1− α)σ2

1

exp

(
−α(1− α)(µ1 − µ2)

2

2(ασ2
2 + (1− α)σ2

1)

)
=

1

α− 1
log

 d∏
j=1

σ1−α
1 σα

2√
ασ2

2 + (1− α)σ2
1

exp

(
−α(1− α)(µ1,j − µ2,j)

2

2(ασ2
2 + (1− α)σ2

1)

)
=

1

α− 1
log

( σ1−α
1 σα

2√
ασ2

2 + (1− α)σ2
1

)d

exp

(
−α(1− α) ∥µ1 − µ2∥2

2(ασ2
2 + (1− α)σ2

1)

)
=

d

α− 1
log

(
σ1−α
1 σα

2√
ασ2

2 + (1− α)σ2
1

)
+

α ∥µ1 − µ2∥2

2(ασ2
2 + (1− α)σ2

1)
.

A.3 Privacy guarantees (Theorem 1)

We would now like to apply Lemma 2 where µ1 = R(x), σ2
1 = γ ∥R(x)∥2 + σ2, µ2 = R(y) and

σ2
2 = γ ∥R(y)∥2 + σ2.

Verifying the condition on α. To this end, we first need to verify that ασ2
2 + (1 − α)σ2

1 > 0, or
equivalently that σ2

2/σ
2
1 ≥ 1−α−1. If applicable, Lemma 1 would directly give us that this is true as

long as (1 + η)−2 ≥ 1− α−1, which leads to the bound:

α−1 ≥ 1− (1 + η)−2 =
η(2 + η)

(1 + η)2
, (12)

so in the end:

α ≤ (1 + η)2

η(2 + η)
. (13)

This is equivalent to α − 1 ≤ 1
η(2+η) , which is the condition from Theorem 1. In order to apply

Lemma 1, we need to verify that

σ2 ≥ γ
1 + η−1

2η + η2
R2

rel =
γR2

rel

η2
1 + η

2 + η
. (14)

This is automatically verified for the choice of σ from Theorem 1 since

1− η(α− 1) ≥ 1− (2 + η)−1 =
1 + η

2 + η
. (15)

Bounding the main term in (11). Now that we verified that we can apply Lemma 2, we can use
it to bound the divergence. To bound the first term in (11), we start by recalling that, by Young’s
inequality,

∥R(x)∥22 ≤ (1 + η) ∥R(y)∥22 + (1 + η−1) ∥R(x)− R(y)∥22 . (16)

14



Using this inequality, we can lower bound the denominator

ασ2
2 + (1− α)σ2

1 (17)

= σ2 + γα ∥R(x)∥22 − γ(α− 1) ∥R(y)∥22 (18)

≥ σ2 + γα ∥R(y)∥22 − γ(α− 1)(1 + η) ∥R(y)∥22 − γ(α− 1)(1 + η−1) ∥R(x)− R(y)∥22 (19)

= σ2 + (γα− γ(α− 1)(1 + η) ∥R(y)∥22 − γ(α− 1)(1 + η−1) ∥R(x)− R(y)∥22 (20)

= σ2 + γ(1− (α− 1)η) ∥R(y)∥22 − γ(α− 1)(1 + η−1) ∥R(x)− R(y)∥22 (21)

Now, remark that relative sensitivity gives ∥R(y)∥22 ≥ 1
η2

(
∥R(x)− R(y)∥22 −R2

)
, which in turn

yields

ασ2
2 + (1− α)σ2

1 (22)

≥ σ2 +
γ

η2
(1− (α− 1)η)

(
∥R(x)− R(y)∥22 −R2

)
− γ(α− 1)(1 + η−1) ∥R(x)− R(y)∥22

(23)

= σ2 − γ

η2
(1− (α− 1)η)R2 +

(
γ

η2
(1− (α− 1)η)− γ(α− 1)(1 + η−1)

)
∥R(x)− R(y)∥22 .

(24)

We now use the condition on α, which is that α− 1 = 1−ρ
η(2+η) for some ρ < 1. If we further assume

that σ2 ≥ γ
η2 (1− (α− 1)η)R2, which is notably the case when σ2 ≥ γR2

η2 , we obtain

ασ2
2 + (1− α)σ2

1 ≥
(

γ

η2
(1− (α− 1)η)− γ(α− 1)(1 + η−1)

)
∥R(x)− R(y)∥22 (25)

=

(
γ

η2
− γ

η
(α− 1) (2 + η)

)
∥R(x)− R(y)∥22 (26)

=
γρ

η2
∥R(x)− R(y)∥22 . (27)

Putting everything back together, we get that for η(2+η)(α−1) ≤ 1, and σ2 ≥ γ(1−(α−1)η)R2/η2:

α ∥R(x)− R(y)∥22
2(ασ2

2 + (1− α)σ2
1)

≤ αη2

2γρ
=

αη2

2γ

1

1− η(2 + η)(α− 1)
. (28)

Bounding the log term in (11). Remark that, as a consequence of Lemma 1, we have that σ2
2 = rσ2

1 ,
for some r ≤ (1 + η)2. In particular, we have

log

(
σ1−α
1 σα

2√
ασ2

2 + (1− α)σ2
1

)
= log

(
rα/2σ1√

1− α+ αrσ1

)
=

α− 1

2
log(r)− 1

2
log

(
1 + (r − 1)α

r

)
.

(29)

The two terms can be upper bounded using log(1 + x) ≤ x for x ≥ −1,

α− 1

2
log(r) ≤ α− 1

2
(r − 1) , (30)

and log(1 + x) ≥ x
1+x for x ≥ −1,

−1

2
log

(
1 + (r − 1)α

r

)
= −1

2
log

(
1 +

(α− 1)(r − 1)

r

)
(31)

≤ −1

2

(α− 1)(r − 1)

r + (α− 1)(r − 1)
(32)

= −1

2

(α− 1)(r − 1)

1 + α(r − 1)
. (33)
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Overall, we obtain

log

(
σ1−α
1 σα

2√
ασ2

2 + (1− α)σ2
1

)
≤ (α− 1)(r − 1)

2

(
1− 1

1 + α(r − 1)

)
=

α(α− 1)(r − 1)2

2
,

(34)

Since (1 + η)−2 ≤ r ≤ (1 + η)2, we have that

|r − 1| ≤ max
(
(1 + η)2 − 1, 1− (1 + η)−2

)
= max

(
η(2 + η),

η(2 + η)

(1 + η)2

)
≤ η(2 + η), (35)

so that in the end:

d

α− 1
log

(
σ1−α
1 σα

2√
ασ2

2 + (1− α)σ2
1

)
≤ αdη2(2 + η)2

2
. (36)

A.4 Tightness

As explained in the main text, the link with local sensitivity implies the tightness of the first term in
Theorem 1 (the one which depends on γ). We now discuss the tightness of the second term, which
comes from the log term in (11). In particular, we write (similarly to the previous section):

log

(
σ1−α
1 σα

2√
ασ2

2 + (1− α)σ2
1

)
=

α

2
log(1 + u)− 1

2
log (1 + αu) = g(u) , (37)

with u = r − 1. We would like to find an expression for g(u) when u ≈ 0, which means that r ≈ 1
and so η is small. Differentiating with respect to u leads to:

g′(u) =
α

2

(
1

1 + u
− 1

1 + αu

)
. (38)

Note that g(0) = 0, and g′(0) = 0, so we have to differentiate once again, leading to:

g′′(u) =
α

2

(
α

(1 + αu)2
− 1

(1 + u)2

)
. (39)

In particular, g′′(0) = α(α−1)
2 , so when r ≈ 1,

g(r) =
α(α− 1)

4
(r − 1)2 +O((r − 1)3). (40)

The leading term is the same expression as we had before, up to a factor 1/2. In particular, the
bounding from the previous subsection is tight up to a factor 1/2.

Ideally, we would like to use this approximation as g(r). In order to do this, we have to show that
g′′′(r − 1) ≤ 0 for all (α, η) we consider. Let us differentiate one last time, leading to:

g′′′(u) = α

(
1

(1 + u)3
− α2

(1 + αu)3

)
. (41)

One can remark that g′′′(u) ≤ 0 for u ≤ 0. However, it can be that g′′′(u) > 0 for some u > 0.
More specifically, if α is large enough (α ≥ 2 for instance), then one can show that g′′′(u) ≤ 0 for
the range of u that we consider (i.e., u = r − 1 ≤ (1 + η)2 − 1 = η(2 + η) ≤ (α− 1)−1. Yet, this
does not hold for all α, and g′′′((α− 1)−1) > 0 for α = 3/2 for instance. This is why we keep the
result which is off by a factor up to 2 for large α, but works for any value of (α, η) in our range.

A.5 Comparison with differential privacy

Corollary 1. Assuming that γ ≤ 1
4(2+η)2 log(1/δ) or d ≥ 8 log(1/δ), and that 0 < δ ≤ 1, the Relative

Gaussian Mechanism is (ϵ, δ)-DP with

ϵ = χ+ 2
√
χ log(1/δ), where χ = η2

γ + 1
2η

2d(2 + η)2. (42)
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Proof. Applying the standard conversion result from RDP to (ϵ, δ)-DP, we get that the Relative
Gaussian Mechanism is (ϵ, δ)-DP for

ϵ = min
1≤α≤ (1+η)2

2η+η2

{
g(α) :=

αη2

2γ(1− η(2 + η)(α− 1))
+

αη2

2
d(2 + η)2 +

log(1/δ)

α− 1

}
. (43)

Restricting to α ≤ 1 + 1
2η(2+η) ≤

(1+η)2

η(2+η) , we have η(2 + η)(α− 1) ≤ 1/2. We can therefore upper
bound g(α) by

g(α) ≤ αη2

γ
+

αη2

2
d(2 + η)2 +

log(1/δ)

α− 1
= αχ+

log(1/δ)

α− 1
. (44)

This upper bound is minimal when χ = log(1/δ)
(α−1)2 , that is α = 1 +

√
log(1/δ)

χ . Using this value of α,
we have

ϵ ≤ g(α) ≤ χ+
√
χ log(1/δ) +

√
χ log(1/δ) ≤ χ+ 2

√
χ log(1/δ). (45)

Note that we could choose this value of α since either γ ≤ 1
4(2+η)2 log(1/δ) or d ≥ 8 log(1/δ). These

inequalities indeed implies that α = 1 +
√

log(1/δ)
χ ≤ 1 + 1

2η(2+η) , which is equivalent to

χ

4η2(2 + η)2
=

1

4γ(2 + η)2
+

1

8
d ≥ log(1/δ). (46)

B Relative L2 sensitivity for releasing gradients

Before we start this section, we introduce a few notions, that will be useful in particular in subsec-
tions B.1 and B.2. The first is the notion of Bregman Divergence, which is defined for a function h
and for points θ, θ′ as:

Dh(θ, θ
′) = h(θ)− h(θ′)−∇h(θ′)⊤(θ − θ′). (47)

One can see that h is L-smooth and µ-strongly convex is equivalent to having for all θ, θ′ ∈ Rd:

µ

2
∥θ − θ′∥2 ≤ Dh(θ, θ

′) ≤ L

2
∥θ − θ′∥2 . (48)

The Bregman divergence also has nice properties w.r.t. convex conjugation. More specifically, the
convex conjugate h∗ of h is defined as h∗(θ) = argmaxu θ

⊤u− f(u). Then, it holds that:

Dh(θ, θ
′) = Dh∗(∇h(θ′),∇h(θ)). (49)

Bregman divergences are often linked in convex optimization to the notion of relative smoothness,
which generalizes regular smoothness. In particular, a function f is said to be Lrel-smooth with
respect to h if for all θ, θ′ ∈ Rd,

Df (θ, θ
′) ≤ LrelDh(θ, θ

′). (50)

This recover standard smoothness when h = 1
2 ∥·∥

2, and will play a key role in showing our relative
sensitivity assumption for gradient descent with general functions.

B.1 Utility (Proof of Theorem 2)

We provide below the proof of Theorem 2. We also prove that under the same assumptions (but this
result can also be used for µ = 0, i.e. f(·;D) is convex), we have that:

f(θ̄t)− f(θ⋆) ≤
∥θ0 − θ⋆∥2

2τt
+

τσ2

2
, (51)

where θ̄t =
1
t

∑t−1
k=0 θk.
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Proof. We write f(θ) = f(·;D) for simplicity. In this case, for all t ≥ 0,

E
[
∥θt+1 − θ⋆∥2

]
≤ ∥θt − θ⋆∥2 − 2τE

[
g⊤t (θt − θ⋆)

]
+ τ2E

[
∥gt∥2

]
= ∥θt − θ⋆∥2 − 2τ∇f(θt)

⊤(θt − θ⋆) + τ2
[
∥∇f(θt)∥2 + E

[
∥ξt∥2

]]
= ∥θt − θ⋆∥2 − 2τ∇f(θt)

⊤(θt − θ⋆) + τ2(1 + γ) ∥∇f(θt)∥2 + τ2σ2.

We now use the smoothness of f , which ensures that ∥∇f(θt)∥2 ≤ 2LDf (θ⋆, θt), and obtain:

E
[
∥θt+1 − θ⋆∥2

]
≤ ∥θt − θ⋆∥2 − 2τDf (θt, θ⋆)− 2τ(1− (1 + γ)τL)Df (θ⋆, θt) + τ2σ2. (52)

We can then use the µ-strong convexity of f , which yields 2Df (θt, θ⋆) ≥ µ ∥θt − θ⋆∥2, and so:

E
[
∥θt+1 − θ⋆∥2

]
≤ (1− τµ) ∥θt − θ⋆∥2 − 2τ(1− (1 + γ)τL) [f(θt)− f(θ⋆)] + τ2σ2. (53)

By taking τ ≤ [(1 + γ)L]−1, using that Df ≥ 0 since f is convex, and chaining the inequalities, we
obtain:

E
[
∥θt − θ⋆∥2

]
≤ (1− τµ)t ∥θ0 − θ⋆∥2 +

τσ2

µ
. (54)

In the convex case (µ = 0), we go back from (52), use the same step-size condition, and rewrite it as:

f(θt)− f(θ⋆) ≤
E
[
∥θt − θ⋆∥2 − ∥θt+1 − θ⋆∥2

]
2τ

+
τσ2

2
. (55)

We now write (telescoping sum):

1

t

t−1∑
k=0

f(θk)− f(θ⋆) ≤
∥θ0 − θ⋆∥2

2τt
+

τσ2

2
. (56)

Equation (51) is obtained by convexity of f .

B.2 Bounding relative sensitivity for general functions

Let f, f ′ be two functions on neighboring datasets (as defined in the main text), such that f − f ′ =
f0 − f ′

0. Let f and f ′ be µ-strongly-convex, f0 and f ′
0 be L-smooth, and f and f ′

0 be Lrel-relatively
smooth w.r.t. both f and f ′. In this case, we have that:

∥∇f(θ)−∇f ′(θ)∥2 =
1

n2
∥∇f0(θ)−∇f ′

0(θ)∥
2

=
1

n2
∥∇f0(θ)−∇f ′

0(θ⋆)− [∇f ′
0(θ)−∇f ′

0(θ⋆)] +∇f0(θ⋆)−∇f ′
0(θ⋆)∥

2

=
3

n2
∥∇f0(θ)−∇f ′

0(θ⋆)∥
2
+

3

n2
∥∇f ′

0(θ)−∇f ′
0(θ⋆)∥

2
+

3

n2
∥∇f0(θ⋆)−∇f ′

0(θ⋆)∥
2
.

Then, using successively the L-smoothness of f0, the Lrel-relative smoothness of f0 w.r.t. f , and
strong convexity of f , we get:

∥∇f0(θ)−∇f ′
0(θ⋆)∥

2 ≤ 2LDf0(θ, θ⋆) ≤ 2LLrelDf (θ, θ⋆) ≤
LLrel

µ
∥∇f(θ)∥2 . (57)

We can then use the same bound for the f ′
0 term, and for making f ′ appear. Compared to direct

bounding without relative smoothness, we have replaced a condition number L/µ by a relative
smoothness term Lrel, which is generally much smaller. We then obtain that η2 = O(κLrel/n

2),
much like in Equation (10).

B.3 Proof for orthogonal data

Let us assume that the data is orthogonal, i.e. that either X⊤
i Xj = ∥Xi∥2 or X⊤

i Xj = 0. This is
actually slightly stronger, because we also assume that there is no norm spread for a given direction.
This could be relaxed so that results would depend on the average norm, but we keep it simple here.
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Consider that at least half of the dataset is fixed, and contains all different Xi in equal proportions.
This means that the weight of each Xi is d−1, since there are exactly d different ones. Indeed, there
cannot be more than d (otherwise the orthogonality constraint would be violated), and if there are less
than d we can just restrict to the relevant subspace. In this case, using that half of the data (w.l.o.g. is
fixed, we have that:

A =
1

n

n∑
i=1

XiX
⊤
i ≽

1

n

n/2∑
i=1

XiX
⊤
i ≽

1

2d

d∑
i=1

XiX
⊤
i ,

where the last line comes from the fact that each Xi is represented n/d times, and we implicitly
assume (again, w.l.o.g.) that the i first samples are all orthogonal to one another. In particular, for
j ∈ {1, . . . , d},

∥Xi∥2 X⊤
i A−2Xi ≤ 2d ∥Xi∥2 X⊤

i

 d∑
j=1

XjX
⊤
j

−2

Xi = 2d ∥Xi∥2 X⊤
i

(
XiX

⊤
i

∥Xi∥4

)2

Xi = 2d.

Note in particular that the relative sensitivity is independent of the scale of each Xi.

B.4 Proof of Proposition 1

Proof. We use for the proof that
∥∥A0A

−1
∥∥ ≤

√
κX⊤

0 A−1X0. However, A is a random variable,
with potentially unbounded condition number. Thus, we first need to use concentration on A to obtain
the result. We could alternatively directly bound ∥X0∥2 X⊤

0 A−2X0, which might lead to a tighter
bound (but only up to constants in the worst-case), but would require a specialized concentration
result. Let L, µ > 0 be the largest and smallest eigenvalue of Σ. Let us define Ã = A− µregId. We
start by conditioning on the fact that n is large enough that A concentrates well around its mean:

p(∃i,
∥∥AiA

−1
∥∥ > Lrel) ≤ p(∃i s.t.

∥∥AiA
−1
∥∥ > Lrel, ∥Ã− Σ∥ ≤ ∆) + p(∥Ã− Σ∥ > ∆). (58)

We first bound the second term, for which we apply Even and Massoulié [2021, Theorem 3], which
states that:

p(∥Ã− Σ∥ > ∆) ≤ δ

2
for ∆ = C2L

2

√
deff + ln(d) + ln(2δ−1)

n
, (59)

where C2 is an absolute constant and deff = Tr(Σ)/L ≤ d is the effective dimension of Σ.

Let us now bound the first term. We set the regularization µreg = ∆ = C2L
2

√
deff+ln(d)+ln(2δ−1)

n .

Since ∥Ã− Σ∥ ≤ ∆ implies that Ã ≽ Σ−∆Id, we have that under this condition:

A = Ã+ µregId ≽ Σ. (60)

In particular, we obtain:

p(∃i s.t.
∥∥AiA

−1
∥∥ > Lrel, ∥Ã− Σ∥ ≤ ∆) ≤ p(∃i s.t. X⊤

i A−1Xi >
√
κLrel, ∥Ã− Σ∥ ≤ ∆)

≤ p(∃i s.t. X⊤
i Σ−1Xi >

√
κLrel, ∥Ã− Σ∥ ≤ ∆)

≤ p(∃i s.t. X⊤
i Σ−1Xi >

√
κLrel)

≤ np(X⊤
0 Σ−1X0 >

√
κLrel).

where the last inequality follows from a union bound. Now, notice that if X0 ∼ N(0,Σ) then

p(X⊤
0 Σ−1X0 > Lrel) = p(χ2(d) > Lrel) ≤ 1− F (kLrel, d) ≤

(
Lrel

d
e1−

Lrel
d

) d
2

, (61)

where F (·, d) is the cumulative distribution function of the χ2(d) distribution. One can then show
that Lrel/d ≤ e

2Lrel
3d for all d, and so we have that p(X⊤

0 Σ−1X0 > Lrel) ≤ ed exp(−Lrel

6 ), and so
in particular, choosing the right value for Lrel leads such that the probability is small enough leads to:

p(X⊤
0 Σ−1X0 > Lrel) ≤

δ

2n
for Lrel = 6d log

(
2n

δ

)
. (62)
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B.5 Proof of Proposition 2

Proof. The first thing we need to argue is that we can indeed use (10) for clipping, which requires that
if we have two neighboring datasets D and D′, then ∇f(θ;D)−∇f(θ;D′) = Ã0θ− b̃0− Ã′

0θ+ b̃′0,
where the tilde indicates the clipped dataset. This is true because C is independent of D or D′, and
so in particular all Xi are clipped in the same way whether they beyond to D or D′, and so all indices
but 0 cancel when taking the gradients’ difference.

Now, let Ã = X̃X̃⊤ be the covariance of the clipped dataset. Then,

Ã =
1

n

∑
i

X̃iX̃
⊤
i ≽

1

n

∑
i∈IC

X̃iX̃
⊤
i ≽

ω

|IC |
∑
i∈IC

XiX
⊤
i = ωAC ≽ ωρC. (63)

In particular, all points in the clipped dataset verify:

∥X̃i∥2X̃⊤
i Ã−2X̃i ≤ ω−2ρ−2∥X̃i∥2X̃⊤

i C−2X̃i ≤
R4

c

ω2ρ2
. (64)

B.6 Proof of Proposition 3

Proof. The proof follows the following plan:

1. With probability δ, there are at least |Ic| ≥ ω(Rc, δ)n, with ω(Rc, δ) = p(χ2(d) ≤
R2

c)−
√
log(δ−1)/2n.

2. These points concentrate, i.e., if we define Ac =
∑

i∈Ic
XiX

⊤
i /|Ic| then:

p(∥Ac − E [Ac]∥ ≥ 4LR2
c

√
log(2d/δ)

n
) ≤ δ for n ≥ 4 log(2d/δ)/9. (65)

3. E [Ac] = ρ(Rc)Σ, which finishes the proof.

1 - Lower bound on ω. The indicator of the event {i ∈ Ic} is a Bernoulli random variable with
parameter pIc = p(X⊤

i Σ−1Xi ≤ R2
c). Thus, the random variable |Ic| follows a Binomial distribution

with parameters n, pIc . In particular, Hoeffding inequality leads to:

p(|Ic| ≥ k) = 1− p(|Ic| ≤ k) ≥ 1− exp
(
−2n(pIc − k/n)2

)
.

This means that taking k = npIc −
√
n log(δ−1)/2 leads to p(|Ic| ≥ k) ≤ δ. We finish the proof by

noting that X⊤
i Σ−1Xi follows a χ2(d) distribution, so that pIc = p(χ2(d) ≤ R2

c).

2 - Concentration of the covariance. Let nc = |Ic|. For i ∈ Ic, X⊤
i Σ−1Xi ≤ R2

c , and so
λmax(XiX

⊤
i ) ≤ R2

cL. Let us define Si = XiX
⊤
i /nc. Then,

∥Sk − E [Sk]∥ ≤ 2R2
cL/nc, and ν =

∑
i∈Ic

E
[
∥Si − E [Si]∥2

]
≤ 4L2R4

c

n
. (66)

In particular, we can then use Tropp et al. [2015, Corollary 6.1.2] to bound the tails of Ac =
∑

i∈Ic
Si

as:

p(∥Ac − E [Ac]∥) ≥ t) ≤ 2d exp

(
− nt2

8L2R4
c + 4LR2

ct/3

)
. (67)

In particular, if t ≤ 6LR2
c then

p(∥Ac − E [Ac]∥ ≥ t) ≤ 2d exp

(
− nt2

16L2R4
c

)
. (68)

In this case, we have that

p

(
∥Ac − E [Ac]∥ ≥ 4LR2

c

√
log(2d/δ)

n

)
≤ δ for n ≥ 4 log(2d/δ)/9. (69)
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E [Ac] is lower bounded by the covariance. We write, using the change of variable u = Σ− 1
2x:

E [Ac] =
1

(2π)d/2|Σ| 12

∫
Rd

1{x⊤Σ−1x ≤ R2
c}xx⊤e−

x⊤Σ−1x
2 dx

= Σ
1
2

1

(2π)d/2

∫
Rd

1{∥u∥2 ≤ R2
c}uu⊤e−

∥u∥2
2 duΣ

1
2

= Σ× 1

(2π)d/2

∫
Rd

1{∥u∥2 ≤ R2
c}

∥u∥2

d
e−

∥u∥2
2 du,

where the last line follows from the fact that the expression within the integral is completely symmetric,
so for any u, each direction receives a weight proportional to d−1. In particular,

ρ =
1

d(2π)d/2

∫
Rd

1{∥u∥2 ≤ R2
c} ∥u∥

2
e−

∥u∥2
2 du, (70)

which only depends on Rc, and is close to 1 for instance when R2
c ≥ 2d. If we did not have the ∥u∥2

term within the integral then this would be exactly equal to the cumulated distribution function of the
χ2(d) distribution. Yet, it is slightly different in our case and a more precise evaluation would require
specific detailed derivations.

C Details on the experimental setup

In this section, we provide the various details needed to reproduce our results. Note that we also
provide code in supplementary material. Our experimental setup assumes that the data is split across
2 nodes. At each step t, node i privately releases its gradient g(i)t , computed at point θt. For all
methods, we run the following gradient descent algorithm:

θt+1 = θt − τ × 1

2
(g

(1)
t + g

(2)
t ), (71)

where τ is the step-size. In order to comply with the guidelines of Theorem 2, we set
it as half the maximum of the largest eigenvalue of the local covariance matrices, so τ =
0.5/max(λmax(A

(1)), λmax(A
(2))) which is an approximation for the true largest possible step-

size. This is the step-size we use regardless of the method used for noising. Then, all methods only
differ in the way they add noise to the gradients. The non-private method thus releases:

g
(i)
t =

1

N

N∑
j=1

∇fij(θ) =
1

N

N∑
j=1

Aijθ − bij . (72)

C.1 Parameters for GD with clipping

For gradient clipping, each node clips all its individual gradients using a clipping threshold c(i). In
particular, the noisy gradients write:

g
(i)
t =

1

N

N∑
j=1

∇fij(θt)ci
max(ci, ∥∇fij(θt)∥)

+N(0, σ2
i ), (73)

where the variance of the noise σ2
i is computed as

σ2
i =

αc2i
εN2

, (74)

where α and ε are the Rényi-DP parameters. The results of DP-GD heavily depend on how we set
the clipping threshold ci.

One way of setting it is simply to randomly try out some clipping thresholds (potentially with external
knowledge), but this is quite inefficient, as each node node needss to release M times more gradients
to the other node if we would like to try M thresholds. Instead, we assume in this work that we can
estimate the stochastic gradients at the optimum for the function we consider, and choose the smallest
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threshold such that none of these gradients is clipped, so ci = maxj ∥∇fij(θ
⋆
i )∥. This leverages

auxiliary information, and is a very strong baseline in the homogeneous setting, but leads to small
clipping thresholds in the heterogeneous setting. This leads to small noise but potentially large bias.
We observe in our experiments that thresholds significantly lower than ci do not introduce such a
large bias still. We conjecture that this is due to the fact that the bias introduced from clipping is
small for specific distributions, for instance symmetric. Also note that per-instance clipping is in
general computationally expensive, and in particular required significantly more time in our case.

C.2 Parameters for GD with relative sensitivity

In this case, the noisy gradients we release are of the form:

g
(i)
t = ḡt

(i) +N(0, γi∥ḡt(i)∥2 + σ2
i ), where ḡt

(i) =
1

N

N∑
j=1

Ãijθt − b̃ij . (75)

The parameters γi and σ2
i depend on the relative sensitivity parameters η and Rrel, as specified

in Theorem 1. To set η, we rely on Assumption 1. This requires some prior knowledge in order
to have a covariance that is independent of the specific dataset we sample, which will be heavily
application-dependent. Thus, what we do instead is that we choose this ellipse as the covariance of
the full dataset, with a radius such that it contains 99% of the points in the base dataset. We then drop
the remaining points (we could alternatively keep them and project them back onto the ellipse). To
set Rrel, we use that it is bounded by η ∥bi∥ + 2max ∥bij∥. Thus, we bound it by computing the
max norm of the bij , which can also be enforced via clipping. Although ∥bi∥ ≤ max ∥bij∥, we use a
separate threshold for ∥bi∥ which usually leads to tighter guarantees. Note that we can alternatively
approximate the local optimum θ⋆i and set Rrel = maxk,ℓ ∥∇fik(θ

⋆
i )−∇fiℓ(θ

⋆
i )∥. However, we

choose not to in this case because we want something that is enforceable, and this bound is harder to
enforce via clipping the bij . We neglect the privacy loss term αη2d factor in our code since we only
consider datasets of small dimension. Similarly, as the examples are mainly intended to be illustrative
and the constants have not been optimized for, we omit constant factors when estimating η.

As in the clipping case, this specific procedure of choosing the hyperparameters does not strictly
guarantee differential privacy, as it uses local datasets. Yet, in practice, application-specific knowledge
can help set these parameters. We choose these favorable parameters to show what different methods
can do with appropriate hyperparameters, without explicitly quantifying the privacy loss incurred by
having to find these parameters. Besides, we choose parameters that can be enforced, so that strict
DP is guaranteed if we assume we have some public data to estimate these parameters on.

We present experiments on the ijcnn1 dataset since the estimated η were rather small, and so could
illustrate a case in which RGMγ,σ is useful. This is also the case for other LibSVM datasets that we
tested, such as HIGGS or SUZY. Other datasets such as cod-rna require high levels of regularization
to obtain small η, potentially trivializing the initial problem.
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