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Abstract
In this paper, we perform a non-asymptotic analy-
sis of the federated linear stochastic approxima-
tion (FedLSA) algorithm. We explicitly quantify
the bias introduced by local training with het-
erogeneous agents, and investigate the sample
complexity of the algorithm. We show that the
communication complexity of FedLSA scales
polynomially with the desired precision ϵ, which
limits the benefits of federation. To overcome
this, we propose SCAFFLSA, a novel variant of
FedLSA, that uses control variates to correct the
bias of local training, and prove its convergence
without assumptions on statistical heterogeneity.
We apply the proposed methodology to federated
temporal difference learning with linear function
approximation, and analyze the corresponding
complexity improvements.

1. Introduction
Federated Learning (FL) (McMahan et al., 2017; Konečnỳ
et al., 2016) represents a paradigm shift in machine learning,
leveraging decentralized datasets across different devices or
agents, while ensuring that the data remains at its source.
This federated approach to model training involves the it-
erative refinement of a global model through a sequence
of interactions with local oracles. These oracles, working
with individual agent datasets, provide updates to a cen-
tralized server. The server then integrates these updates to
incrementally improve and evolve the global model.

The predominant research in federated learning (FL) fo-
cuses on stochastic gradient methods tailored to distributed
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loss minimization tasks. These tasks often benefit from a
particular structure (e.g. finite-sum, overparameterization),
that allow the use of ad-hoc techniques to handle gradients’
stochasticity. In this study, the focus is shifted to the stochas-
tic approximation (SA) paradigm (Robbins & Monro, 1951).
Unlike stochastic gradient scenarios, the stochastic oracles
in SA do not originate from the gradient of a loss function.
Consequently, analyzing SA techniques requires a novel set
of analytical tools. These tools, despite their importance in
federated settings, have yet to be explored.

In this manuscript, we dive into the field of federated linear
stochastic approximation (federated LSA) with a particular
focus on the heterogeneity of participating agents. Hetero-
geneity poses a major challenge: if not carefully managed, it
can severely affect the performance of federated algorithms,
limiting the practical utility of such methods in real-world
applications. The main goal of federated LSA is to solve
a linear system of equations, where (i) the system matrix
and the corresponding target are only accessible via stochas-
tic oracles, and (ii) these oracles are distributed over an
ensemble of heterogeneous agents. This problems can be
solved using the FedLSA procedure, which performs LSA
locally, with occasional consensus steps. An important ap-
plication of federated LSA is federated policy evaluation
in reinforcement learning. This is usually carried out us-
ing temporal difference learning (TD); see Sutton (1988).
In the TD paradigm, the stochastic oracles involved in the
process are characterized by high variance, a property that
highlights the potential benefits of promoting cooperation
between agents to speed up evaluation. Consequently, it is
the stochastic nature of these oracles that often proves to be
the most critical constraint in such environments.

In particular, there is a notable strand of research, initiated
by Karimireddy et al. (2020), that deals with heterogeneity
using control variates. However, the effectiveness of these
approaches remains unclear when the local oracle has high
variance; see Mishchenko et al. (2022). Since such noisy
environments are particularly relevant for TD learning, this
raises a critical question: Should the usage of control vari-
ates provably improve the communication complexity of the
Federated SA procedure?
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In this paper, we attempt to provide a positive answer to this
question in the specific setting of federated LSA with het-
erogeneous agents. Our primary contribution is threefold:

• Inspired by the study of Wang et al. (2022), we in-
vestigate the non-asymptotic behavior of the FedLSA
algorithm. Our analysis delineates the exact relation-
ship between the mean squared error (MSE) of the
FedLSA procedure and three key factors: the num-
ber of local updates, the magnitude of the local step
size, and the number of agents. Furthermore, we de-
rive an analytical formulation that captures the intrinsic
heterogeneity bias.

• To correct the heterogeneity bias, we propose and an-
alyze SCAFFLSA, a variant of FedLSA that lever-
ages control variates, with two different communica-
tion strategies: first, the randomized communication
scheme, which is similar to the framework used in
proximal federated methods (see e.g. Mishchenko et al.
(2022)), and second, the deterministic-temporal com-
munication pattern, where communication is system-
atically activated at the end of blocks of H local step.
This ensures compatibility with different operational
paradigms typical of federated learning environments.

• We show how the proposed methodology can be ap-
plied to federated policy evaluation problems in re-
inforcement learning in heterogeneous settings. We
focus on the situation of federated TD learning with lin-
ear functional approximation and establish tight finite-
sample upper bounds of the mean square error, improv-
ing over existing analyses.

This paper is organized as follows. We first discuss related
work in Section 2. We then introduce federated LSA and
TD in Section 3, and analyze it in Section 4. Section 5 then
introduces a novel strategy for mitigating the bias. Finally,
we illustrate our results numerically in Section 6.

Notations and definitions. In the rest of the paper, we will
use the following notations. For matrixAwe denote by ∥A∥
its operator norm. Setting N for the number of communi-
cating clients, we use the notation Ec[ac] = 1

N

∑N
c=1 ac

for the average over different clients. For the matrix
A = A⊤ ⪰ 0, A ∈ Rd×d and vector x ∈ Rd we define the
corresponding norm ∥x∥A =

√
x⊤Ax. For the sequences

an and bn we write an ≲ bn if there exist a constant c > 0
such that an ≤ cbn for c > 0.

2. Related Work
Federated Learning. Apart from the seminal work from
Doan (2020) on federated stochastic approximation, most
of the FL literature is devoted to federated gradient methods.

Overall, a strong focus has been put on the celebrated Feder-
ated Averaging (FedAvg) algorithm (McMahan et al., 2017).
FedAvg aims to reduce communication through local train-
ing, which causes local drift when agents are heterogeneous
(Zhao et al., 2018). Sample and communication complexity
of FedAvg have been studied under different assumptions,
with homogeneous agents (Li et al., 2020; Haddadpour &
Mahdavi, 2019) and heterogeneous agents (Khaled et al.,
2020; Koloskova et al., 2020). It was also shown to yield
linear speed-up in the number of agents when gradient are
stochastic (Qu et al., 2021). In practice, FedAvg exhibits
much better performance than predicted by most theoreti-
cal analyses when agents are heterogeneous (Collins et al.,
2021; Reddi et al., 2020). This phenomenon has been stud-
ied theoretically by Wang et al. (2022); Patel et al. (2023),
who proposed new measures of heterogeneity, that are more
adapted to FedAvg. Our analysis of federated linear stochas-
tic approximation extends these ideas to the linear stochastic
approximation setting.

Another line of work aims to correct FedAvg’s bias by in-
troducing control variates, that compensate for heterogene-
ity. This was proposed by Karimireddy et al. (2020), with
the Scaffold method, and was then studied by Gorbunov
et al. (2021); Mitra et al. (2021), recovering the conver-
gence rate of gradient descent (with a single local step),
regardless of heterogeneity. It was later shown with Prox-
Skip (Mishchenko et al., 2022) that such methods indeed
accelerate the training. However, and contrarily to Scaffold,
they lose the linear speed-up in the number of agents when
gradients are stochastic. Multiple other methods with accel-
erated rates have been proposed (Malinovsky et al., 2022;
Condat et al., 2022; Condat & Richtárik, 2022; Grudzień
et al., 2023; Hu & Huang, 2023), although all lose the linear
speed-up. Inspired from these works, we propose a new
method for federated linear stochastic approximation, with
improved rates at the cost of the linear speed-up.

Single-agent and Federated TD-learning. Temporal differ-
ence (TD) learning have a long history in policy evaluation
(Sutton, 1988; Dann et al., 2014), with classical asymp-
totic analyses in the linear function approximation setting
(Tsitsiklis & Van Roy, 1997; Sutton et al., 2009). Multiple
non-asymptotic analyses of the mean squared error (MSE)
of TD-type algorithms have been proposed (Bhandari et al.,
2018; Dalal et al., 2018; Patil et al., 2023; Li et al., 2023b;
Samsonov et al., 2023). Recently, significant attention has
been drawn to federated reinforcement learning (Lim et al.,
2020; Qi et al., 2021; Xie & Song, 2023) and to Federated
TD learning with linear function approximation. Khodada-
dian et al. (2022); Dal Fabbro et al. (2023); Liu & Olshevsky
(2023) analysed it with very little communication, under the
strong assumption that agents are identical. Federated TD
was studied with heterogeneous agents, first without local
training (Doan, 2020), then with local training, but no linear
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speed-up (Doan et al., 2019; Jin et al., 2022). More recently,
Wang et al. (2023) analyzed federated TD with heteroge-
neous agents, local training, and linear speed-up in number
of agents in a low-heterogeneity setting. Unfortunately, their
analysis suffers from unavoidable bias. Additionally, its de-
pendence on noise levels can be pessimistic, and requires
the server to project aggregated iterates to a ball of unknown
radius. In contrast, we give sharp bounds on the conver-
gence of federated TD, with linear speed-up, and explicit
characterization of the bias. We also propose a strategy to
mitigate this bias, allowing for extended local training.

3. Federated LSA and TD learning
In this paper, we study the federated linear stochastic approx-
imation problem, where N agents aim to collaboratively
solve a system with the following finite sum structure(

1
N

∑N
c=1 Ā

c
)
θ⋆ =

1
N

∑N
c=1 b̄

c , (1)

where for c ∈ [N ], Āc ∈ Rd×d, b̄c ∈ Rd, and we assume
the solution θ⋆ to be unique. We set the system matrix and
corresponding right-hand side, respectively, as

Ā = 1
N

∑N
c=1 Ā

c , b̄ = 1
N

∑N
c=1 b̄

c .

In linear stochastic approximation, neither matrices Āc

nor vectors b̄c are observed directly. Instead, each agent
c ∈ [N ] has access to its own observation sequence
{(Ac(Zck),b

c(Zck))}k∈N. For each c ∈ [N ], Ac : Z →
Rd×d and bc : Z → Rd are measurable functions, and
(Zck)n∈N is an i.i.d. sequence, with values in a state space
(Z,Z) and distribution πc satisfying E[Ac(Zc1)] = Āc and
E[bc(Zc1)] = b̄c. In the following, we assume that agents’
observation sequences are independent from each other, and
that each local system Ācθc⋆ = b̄c has a unique solution θc⋆.

In the federated setting, agents can only communicate
through a central server, and such communications are gen-
erally costly. This makes problem (1) challenging, as it
must be solved collaboratively by all agents. To this end,
we propose FedLSA, where agents perform local updates,
that are aggregated periodically to limit the communication
burden. During round t > 0, agents start from a shared
value θt and perform H > 0 local updates, for h = 1 to H ,

θct,h = θct,h−1 − η(Ac(Zct,h)− bc(Zct,h)) ,

where we set θct,0 = θt, and use the alias Zct,h ≡ ZcHt+h−1

to simplify notations. Agents then send θt,H to the cen-
tral server, that aggregates them as θt = 1

N

∑N
c=1 θt−1,H

and sends it back to all agents. We describe the complete
FedLSA procedure in Algorithm 1.

Stochastic expansions for local updates. We use the
error expansion framework (see e.g. Aguech et al., 2000;

Algorithm 1 FedLSA
Input: η > 0, θ0 ∈ Rd, T,N,H > 0
for t = 0 to T − 1 do

Initialize θt,0 = θt
for c = 1 to N do

for h = 1 to H do
Receive Zct,h and perform local update:

θt,h = θct,h−1 − η(Ac(Zct,h)− bc(Zct,h)) (2)

end for
end for
Average: θt+1 = 1

N

∑N
c=1 θ

c
t,H (3)

end for

Durmus et al., 2022) for LSA to analyze the mean squared
error of the estimates of Algorithm 1. For this purpose, we
rewrite local updates (2) as

θct,h − θc⋆ = (I− ηA(Zct,h))(θ
c
t,h−1 − θc⋆)− ηεc(Zct,h) , (4)

where we have set b̃c(z) = bc(z)− b̄c, Ãc(z) = Ac(z)−
Āc, and defined the noise variable at each θc⋆,

εc(z) = Ãc(z)θc⋆ − b̃c(z) .

Running the recursion (4) until the start of local training,
we obtain that

θct,H−θc⋆ = Γ
(c,η)
t,1:H{θct,0−θc⋆}−η

∑H
h=1 Γ

(c,η)
t,h+1:Hε

c(Zct,h) ,

where we introduced the notation

Γ
(c,η)
t,m:n =

∏n
h=m(I− ηA(Zct,h)) , 1 ≤ m ≤ n ≤ H ,

with the convention Γ
(c,η)
t,m:n = I for m > n. Now we

proceed with the classical assumptions, under which we
analyze the LSA error dynamics:
A 1. For each agent c the observations (Zck)k∈N are i.i.d.
random variables taking values in (Z,Z) with a distribution
πc satisfying Eπc

[Ac(Zc1)] = Āc and Eπc
[b(Zc1)] = b̄c.

Moreover, for each c ∈ [N ] the following matrices exist

Σcε =
∫
Z
εc(z)εc(z)⊤dπc(z) , (5)

Σc
Ã

=
∫
Z
(Ãc(z))⊤Ãc(z)dπc(z) , (6)

and CA = supc∈[N ] ∥Āc∥ <∞ .
A2. There exist a > 0, η∞ > 0, such that η∞a ≤ 1/2, and
for η ∈ (0; η∞), c ∈ [N ], u ∈ Rd, h ∈ N,

E1/2
[
∥Γ(c,η)

t,1:hu∥2
]
≤ (1− ηa)h∥u∥ . (7)

Assumption A1 is classical in finite-time studies of LSA it-
erates; see e.g. Srikant & Ying (2019); Durmus et al. (2022).
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In the considered application to the Federated TD learning,
the random matrices Ãc(z) and vectors εc(z) are almost
sure bounded, so they automatically admit finite moments.
Note that the matrix Σcε from (5) measures the noise level
at the local optimum θc⋆. Verifying the exponential stabil-
ity assumption A2 is crucial for the convergence of LSA
algorithm since it automatically implies that the transient
component of the error θ̃(tr)t decreases exponentially fast;
see Guo & Ljung (1995); Priouret & Veretenikov (1998). In
practical applications, this assumption requires careful veri-
fication, with particular attention to the way the parameter
a in (7) scales with instance-dependent quantities. Impor-
tantly, A2 implies the stability of the deterministic matrix
product, that is, for any u ∈ Rd we have

∥(I− ηĀc)hu∥ ≤ (1− ηa)h∥u∥ .

In Section 5, we will sometimes require a finer assumption,
which we state here for ease of reference.
A3. There exist constants a, L > 0, such that for any η ∈
(0, 1/L), c ∈ [N ], it holds for Z ∼ πc, that

aI ≼ E[ 12 (A
c(Z) +Ac(Z)⊤)] ≼ 1

LE[A
c(Z)⊤Ac(Z)] .

This assumption is slightly more restrictive than A2, since
whenver A3 holds, A2 also holds with the same constant a
(see Patil et al., 2023; Samsonov et al., 2023).

Federated temporal-difference learning. We now con-
sider the particular example of federated TD-learning with
linear function approximation. In this setting we observe N
Markov Decision Processes (S,A,PcMDP, r

c, γ) with com-
mon state and action spaces. Here, γ is a discounting factor,
and each of the agents has its own environment dynamics
PcMDP. The state space S is assumed to be a complete metric
space. The dynamics of each MDP is encapsulated by the
Markov kernel PcMDP(B|s, a), which specifies the probabil-
ity of transitioning from state s to a set B ∈ B(S) upon
taking action a. We denote by rs : S × A → [0, 1] the
reward function (assumed to be deterministic for simplicity)
and by π(·|s) an agent’s policy (assumed to be the same for
all agents). On the contrary, the dynamics PcMDP and reward
function rs are specific to each agent. The objective is to
compute the agent’s value function under the policy π

V c,π(s) = E [
∑∞
t=0 γ

trc(Sct , A
c
t)] ,

where Sc0 = s, and for t ∈ N, Act ∼ π(·|Sct ) and
Sct+1 ∼ PcMDP(·|Sct , Act). We consider linear functional
approximation for V c,π(s) with a feature mapping φ :
S → Rd, i.e. we aim to approximate the value function
by V c,πθ (s) = φ⊤(s)θ, θ ∈ Rd. For c ∈ [N ], we set µc

the invariant distribution over S induced by (π,PcMDP), and
define the design matrix Σcφ as

Σcφ = Eµc [φ(Sc0)φ(S
c
0)

⊤] ∈ Rd×d .

Properties of Σcφ are extremely important for our analysis,
since we define the optimal approximation parameter θc⋆ as

θc⋆ ∈ argminθ∈Rd Es∼µc [∥V c,πθ (s)− V c,π(s)∥2] . (8)

With the linear functional approximation (LFA) we can
write the federated TD(0) as a particular setting of FedLSA
algorithm. Here we follow other papers of TD(0) with LFA
(Patil et al., 2023; Wang et al., 2023), and leave detailed
description to Appendix D. We put the assumptions on Σcφ
and generative mechanism, which are classical in TD (Patil
et al., 2023; Li et al., 2023a; Samsonov et al., 2023).
TD 1. Tuples (Sct , A

c
t , S

c
t+1) are generated i.i.d.with Sct ∼

µc, Act ∼ π(·|s), Sct+1 ∼ PcMDP(·|Sct , Act) .
TD 2. Matrices Σcφ are non-degenerate with the minimal
eigenvalue ν = minc∈[N ] λmin(Σ

c
φ) > 0. Moreover, the

feature mapping φ(·) satisfies sups∈S ∥φ(s)∥ ≤ 1.

The generative model assumption TD 1 is used in many
previous works; see, e.g. Dalal et al. (2018); Li et al. (2023a);
Patil et al. (2023). We note that it is possible to generalize
this assumption to the more realistic setting of on-policy
evaluation over a single trajectory leveraging the Markovian
noise dynamics, following Wang et al. (2023). However, we
leave it as a direction for the future work. Assumption TD
2 allows to ensure the uniqueness of the optimal parameter
θc⋆ in (8). Under TD 1 and TD 2 we check the general LSA
assumptions A1-A3, and the following statement holds.
Lemma 3.1. Assume TD 1-TD 2. Then the sequence of
TD(0) updates satisfies assumptions A1-A3 with

CA = 1 + γ , ∥Σc
Ã
∥ ≤ 2(1 + γ)2 , (9)

Tr(Σcε) ≤ 2(1 + γ)2
(
∥θc⋆∥2 + 1

)
, (10)

a = (1−γ)ν
2 , η∞ = (1−γ)

4 , L = 1+γ
(1−γ)2ν . (11)

Proof of the bounds (9)–(11) can be found in Samsonov
et al. (2023) or Patil et al. (2023). For reader’s convenience
we provide a detailed argument in Appendix D. In the con-
sidered setting the local optimum parameter θc⋆ corresponds
to the (unique) solution of the system Ācθc⋆ = b̄c , where
we set, respectively,

Āc = Es∼µc,s′∼Pπ,c(·|s)[ϕ(s){ϕ(s)− γϕ(s′)}⊤] (12)
b̄c = Es∼µc,a∼π(·|s)[ϕ(s)r(s, a)] .

In case of a single-agent TD(0) the quantity of interest,
which measures the quality of parameter θ compared to θc⋆
is arguably (see Patil et al., 2023; Wang et al., 2023) not the
norm ∥θ − θc⋆∥2, but rather

∥θ − θc⋆∥2Σc
φ
= Es∼µc [∥V c,πθ (s)− V c,πθc⋆

(s)∥2] .

In our setting, the optimal parameter θ⋆ corresponds to the
averaged system 1

N

∑N
c=1 Ā

cθ⋆ =
1
N

∑N
c=1 b̄

c. This sys-
tem does not naturally relate to the iterates of TD(0) algo-
rithm with dynamics from some transition kernel Pπ,c(·|s),
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c ∈ [N ]. For this reason, we will present our results using
the euclidean norm ∥ · ∥.

4. Analysis of the FedLSA algorithm
In this section, we analyze the FedLSA algorithm. First,
we express θT as a function of θ0. Then, we study the con-
vergence rate of the algorithm. Finally, we discuss sample
and communication complexity of the algorithm.

Stochastic expansion for FedLSA. To derive an expression
of θT as a function of θ0, we start from the expansions from
Section 3. Using the fact θct,0 = θt−1, and employing the
global averaging procedure (3), we obtain that

θt − θ⋆ = Γ̄
(η)
t,H{θt−1 − θ⋆}+ ρ̄H + τ̄t,H + ηφ̄t,H , (13)

where we have defined

Γ̄
(η)
t,H = 1

N

∑N
c=1 Γ

(c,η)
t,1:H , (14)

ρ̄H = 1
N

∑N
c=1(I− (I− ηĀc)H){θc⋆ − θ⋆} ,

τ̄t,H = 1
N

∑N
c=1{(I− ηĀc)H − Γ

(c,η)
t,1:H}{θc⋆ − θ⋆} ,

φ̄t,H = − 1
N

∑N
c=1

∑H
h=1 Γ

(c,η)
t,h+1:Hε

c(Zct,h) .

The transient term Γ̄
(η)
t,H(θt−1 − θ⋆), responsible for the

rate of forgetting the previous iteration error θt−1 − θ⋆, and
the fluctuation term ηφ̄t,H , reflecting the oscillations of the
iterates around θ⋆, are similar to the ones from the standard
LSA error decomposition. The two additional terms in (13)
reflect the heterogeneity bias. This bias is composed of
two parts: the true bias ρ̄H , which is non-random, and its
fluctuations τ̄t,H . Note that, if H = 1, then the bias term
vanishes, as

ρ̄1 = 1
N

∑N
c=1 Ā

c{θc⋆ − θ⋆} = 0 , (15)

which shows that, when doing a single local step, the bias
due to local training disappears. When H ≥ 2, we show in
Lemma C.3 that the bias term can be bounded by

∥ρ̄H∥ ≤ η2H2

N

∑N
c=1 exp(ηH∥Āc∥)∥θc⋆ − θ⋆∥ . (16)

This bound cannot be improved without further assumptions.
To analyze the complexity and communication complexity
of FedLSA, we run the recurrence (13) to obtain

θt − θ⋆ = θ̃
(tr)
t + θ̃

(bi,bi)
t + θ̃

(fl,bi)
t + θ̃

(fl)
t , (17)

where we have defined

θ̃
(tr)
t =

∏t
s=1 Γ̄

(η)
s,H{θ0 − θ⋆} ,

θ̃
(bi,bi)
t =

∑t
s=1

(
Γ̄
(η)
H

)t−s
ρ̄H ,

θ̃
(fl,bi)
t =

∑t
s=1

∏t
i=s+1 Γ̄

(η)
i,H τ̄s,H +∆

(η)
H,s,tρ̄H ,

θ̃
(fl)
t = η

∑t
s=1

∏t
i=s+1 Γ̄

(η)
i,H φ̄s,H ,

with the notations Γ̄(η)
H = E[Γ̄(η)

s,H ] = 1
N

∑N
c=1(I− ηĀc)H

and ∆
(η)
H,s,t =

{∏t
i=s+1 Γ̄

(η)
i,H

}
− (Γ̄

(η)
H )t−s. The first term,

θ̃
(tr)
t gives the rate at which the initial error is forgotten. The

terms θ̃(bi,bi)t and θ̃(fl,bi)t represent the bias and fluctuation
due to statistical heterogeneity across agents. Note that in
the special case where agents are homogeneous (i.e. Āc =
Ā for all c ∈ [N ]), these two terms vanish. Finally, the term
θ̃
(fl)
t depicts the fluctuations of θt around the solution θ⋆.

Convergence rate of FedLSA. First, we analyze the rate at
which FedLSA converges to θ̃(bi,bi)t +θ⋆. The two following
quantities, that are due to heterogeneity and stochasticity of
local estimators, will play a central role in this rate,

ṽheter = Ec[∥ΣcÃ∥∥θc⋆−θ⋆∥2] , σ̄ε = Ec[Tr(Σcε)] . (18)

The quantities ṽheter and σ̄ε corresponds to the different
sources of noise in the error decomposition (17). Indeed, σ̄ε
is related to the variance of local LSA iterates on each of
the agents, while ṽheter controls bias fluctuation term θ̃

(fl,bi)
t .

Note also that in the centralized setting (i.e. N = 1) the
term ṽheter vanishes, but not the term σ̄ε. We now proceed
with the analysis of the MSE of FedLSA’s iterates.

Theorem 4.1. Assume A1 and A2. Then for any step size
η ∈ (0, η∞) it holds that

E
1
2
[
∥θt − θ̃

(bi,bi)
t − θ⋆∥2

]
≲
√

ηṽheter
aN +

√
ησ̄ε

aN

+

√
Ec[∥Σc

Ã
∥]

HN
∥ρ̄H∥
a + (1− ηa)tH∥θ0 − θ⋆∥ ,

where the bias θ̃(bi,bi)t converges to (I− Γ̄
(η)
H )−1ρ̄H at a rate

∥θ̃(bi,bi)t −(I−Γ̄(η)
H )−1ρ̄H∥≤(1−ηa)tH∥(I−Γ̄(η)

H )−1∥∥ρ̄H∥.

The proof of this result relies on bounding carefully each of
the terms from (17). We give the detailed proof with explicit
constants in Appendix A. Importantly, the fluctuation and
heterogeneity terms scale in linearly with N , which allows
to use larger step-size than in the single-agent setting.
Remark 4.2. When N = 1, FedLSA reverts to the central-
ized algorithm: the bias term ρ̄H and its fluctuation ṽheter
vanish in Theorem 4.1, yielding the last-iterate bound

E1/2
[
∥θt − θ⋆∥2

]
≲
√
ησ̄ε/a+ (1− ηa)tH∥θ0 − θ⋆∥ ,

which is known to be sharp in its dependence on η for single-
agent LSA (see Theorem 5 in Durmus et al. (2021)).

These bounds can be instantiated for federated TD(0): using
the bounds from Lemma 3.1, we obtain the following result.

Corollary 4.3. Assume TD 1 and TD 2. Then for any step
size η ∈ (0, 1−γ4 ), the iterates of federated TD(0) satisfy

E1/2
[
∥θt−θ̃(bi,bi)t −θ⋆∥2

]
≲
√

η(Ec[∥θc⋆−θ⋆∥2]∨(1+Ec[∥θc⋆∥2]))
(1−γ)νN

+
√

1
HN

∥ρ̄H∥
(1−γ)ν + (1− η(1−γ)ν

2 )tH∥θ0 − θ⋆∥ .
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The right hand side of Corollary 4.3 scales linearly with
N , allowing for linear speed-up. This is in line with recent
results on federated TD(0), that show linear speed-up either
without local training (Dal Fabbro et al., 2023) or up to a
possibly large bias term (Wang et al., 2023) (see analysis of
their Theorem 2). Next, we will see that our tighter analysis
of the bias allows to prove convergence of federated TD(0)
even under heterogeneity.

Sample and communication complexity of FedLSA.
We begin with the analysis without local training (that is,
H = 1). There, the bias term disappears, and above results
directly give a simplified sample complexity bound.

Corollary 4.4. Assume A1 and A2. Let H = 1, 0 < ϵ < 1.
Set η = aNϵ2

ṽheter∨σ̄ε
∧η∞. Then, to achieve E

[
∥θT−θ⋆∥2

]
≤ ϵ2,

the required number of communications is

T = O
((

1
aη∞

∨ ṽheter∨σ̄ε

Na2ϵ2

)
log ∥θ0−θ⋆∥

ϵ

)
.

Here, we obtain a linear speed-up in terms of sample com-
plexity. This is expected, since when H = 1, FedLSA
amounts to using a stochastic oracle with reduced variance,
allowing for larger step-size. Now, we proceed with the
more delicate setting where H > 1, and heterogeneity bias
does not vanish. We obtain the following bounds.

Corollary 4.5. Assume A 1 and A 2. Let H > 1, and

0 < ϵ <
(
√
ṽheter∨σ̄εEc[∥θc⋆−θ⋆∥])

2/5

a ∨ Ec[∥θc⋆−θ⋆∥]
aCA

. Set the

step size η = O
(

aNϵ2

ṽheter∨σ̄ε
∧ η∞

)
. Then, to achieve E

[
∥θT −

θ⋆∥2
]
< ϵ2 the required number of communications is

T = O
((

1
aη∞

∨ Ec[∥θc⋆−θ⋆∥]
a2ϵ

)
log ∥θ0−θ⋆∥

ϵ

)
, (19)

where the number of local steps is set to

H = O
(

ṽheter∨σ̄ε

Ec[∥θc⋆−θ⋆∥]
1
Nϵ

)
.

In Corollary 4.5, the total number of oracle calls scales as

TH = O
(
ṽheter∨σ̄ε

Na2ϵ2 log ∥θ0−θ⋆∥
ϵ

)
,

which corresponds to the number of iterations of the syn-
chronous version of the LSA method predicted by Corol-
lary 4.4. Thus, despite the bias due to heterogeneity, it is still
possible to achieve linear speed-up. This is notably the case
when communicating regularly enough, so that the ”physi-
cal time” of the local iterations, ηH , scales as ηH = O(ϵ).
Therefore, to achieve precision ϵ2 on the MSE, the number
of communications T in (19) must scale polynomially with
ϵ−1. In the next section, we will show that this drawback
can be overcome by using appropriate control variates. This
will allow to de-bias the algorithm, which will in turn allow
to choose ηH of constant order with respect to ϵ.

Now we state the communication bound of federated TD(0).

Corollary 4.6. Assume TD 1 and TD 2. Then for any
0 < ϵ <

g1(θ
c
⋆,θ⋆)

(1−γ)ν with g1 = O((1 + ∥θ⋆∥)Ec[∥θc⋆ − θ⋆∥]).

Then, to achieve E
[
∥θT − θ⋆∥2

]
< ϵ2 the required number

of communications for federated TD(0) is

T = O
((

1
(1−γ)2ν ∨ Ec[∥θc⋆−θ⋆∥]

(1−γ)2ν2ϵ

)
log ∥θ0−θ⋆∥

ϵ

)
.

Corollary 4.6 shows that, even when agents are heteroge-
neous, it is possible for federated TD(0) to converge to
θ⋆ with arbitrary precision. This follows from our precise
characterization of the bias of federated TD(0) with local
training, and its dependence on the product ηH . Nonethe-
less, the number of rounds T still has to scale polynomially
in ϵ−1. We propose a way of fixing this in the next section.

5. Bias-Corrected Federated LSA
We now introduce the Stochastic Controlled Averaging for
Federated LSA algorithm (SCAFFLSA), an improved ver-
sion of FedLSA that mitigates client drift using control vari-
ates. This method is inspired by ProxSkip (see Mishchenko
et al., 2022), and more specifically Scaffnew, its instance
tailored to minimize sums of strongly convex functions. In
SCAFFLSA, each agent c ∈ [N ] keeps a local variable ξck,
that remains constant between successive communication
rounds. At timestep k, agents perform a local update on the
current estimates of the parameters (θck−1)

N
c=1 as follows

θ̂ck = θ̂ck−1 − η(Ac(Zck)θ̂
c
k−1 − bc(Zck)− ξck−1) .

Then, they communicate according to the value of a variable
Bk ∈ {0, 1}, that is set by one of the following rules.
H 1. Bk ∼ Bernoulli(p) are i.i.d., with p ∈ [0, 1].
H 2. Bk = 1 if k is a multiple of H > 0, Bk = 0 otherwise.

When Bk = 1, agents (i) communicate to the central
server (CS), then (ii) the CS averages local iterates, and
(iii) agents update their local control variates. We de-
scribe the procedure in Algorithm 2. In the following,
we study SCAFFLSA under H 1 and H 2. We estab-
lish finite-time bounds for the MSE of the parameters of
interest E[ 1N

∑N
c=1 ∥θcK − θ⋆∥2]. To this end, we define

the ideal control variates at the global solution, given by
ξc⋆ = Ācθ⋆ − b̄c = Āc(θ⋆ − θc⋆). Using ξc⋆, we can rewrite
the local update as

θ̂ck − θ⋆ = (I− ηAc(Zck))(θ
c
k−1 − θ⋆)+

η(ξck−1 − ξc⋆)− ηωc(Zck) , (20)

where we defined ωc(z) = Ãc(z)θ⋆ − b̃c(z). Under A
1, it has finite covariance Σcω =

∫
Z
ωc(z)ωc(z)⊤dπc(z).

Similarly to (18), we use the notation σ̄ω = Ec[Tr(Σcω)].

Analysis under H 1. In the stochastic communication
paradigm described in H 1, the agents average their respec-
tive local parameters with a predefined probability p dur-
ing each iteration. It is noteworthy that this framework,
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Algorithm 2 SCAFFLSA: Stochastic Controlled FedLSA
Input: η > 0, θ0, ξc0 ∈ Rd, T,N,H, p > 0
Set: K = T/p (if H 1), K = TH (if H 2)
for k = 1 to K do

for c = 1 to N do
Receive Zck and perform local update:

θ̂ck = θ̂ck−1 − η(Ac(Zck)θ̂
c
k−1 − bc(Zck)− ξck−1)

end for
Choose Bk according to H 1 or H 2
if Bk = 1 then

Average local iterates: θck = 1
N

∑N
c=1 θ̂

c
k

Update:

{
ξck = ξck−1 +

p
η (θ

c
k − θ̂ck) if H 1

ξck = ξck−1 +
1
ηH (θck − θ̂ck) if H 2

else
Set: θck = θ̂ck, ξck = ξck−1

end if
end for

as specified in Algorithm 2, does not include an inner
loop. This structural simplification, originally introduced in
Mishchenko et al. (2022), significantly streamlines the anal-
ysis: it can simply be performed by formulating a descent
lemma that revolves around a particular Lyapunov function,

ψk = 1
N

∑N
c=1 ∥θck − θ⋆∥2 + η2

p2
1
N

∑N
c=1 ∥ξck − ξc⋆∥2 .

Examining the expected one-step improvement of this func-
tion effectively captures the dynamics of both the local
parameter updates and the control variates. This provides a
clear way to study the convergence properties and general
behavior of the algorithm. However, this one-step analysis
requires the stronger assumption A3 on Āc. We now estab-
lish finite time-bounds, from which we deduce sample and
communication complexity of Algorithm 2 under H 1.

Theorem 5.1 (MSE bound). Assume A1, A3, and H1. Then,
for any step size η ≤ 1/2L and number of global iteration
K = T/p > 0, it holds, with ζ = min

(
ηa, p2

)
,

E[ 1N
∑N
c=1 ∥θcK − θ⋆∥2] ≤

(
1− ζ

)K
ψ0 +

2η2

ζ σ̄ω ,

where ψ0 = ∥θ0 − θ⋆∥2 + η2

p2Ec[∥Ā
c(θc⋆ − θ⋆)∥2].

Corollary 5.2 (Iteration complexity). Assume A1, A3, and
H 1. Let ϵ > 0. Set η = O

(
min

(
1
L ,

ϵ2a
σ̄ω

))
and p =

√
ηa

(so that ζ = ηa). Then, E[ 1N
∑N
c=1 ∥θcK − θ⋆∥2] ≤ ϵ2 for

an expected number of communication rounds

T = O
(
max

(√
L
a ,

√
σ̄ω

ϵa

)
log
(
ψ0

ϵ2

))
, (21)

where ψ0 is defined in Theorem 5.1, with an expected num-
ber of local updates

1/p = O
(
max

(√
L
a ,

√
σ̄ω

ϵa

))
, for t ∈ [T ] .

We provide the detailed proof of these two statements in
Appendix B.1. In Corollary 5.2 it is shown that the inclusion
of control variates in local updates reduces the required com-
munication rounds by a significant amount, quantifiable as
O(min(

√
L/a, 1/aϵ)). Compared to the scenarios described

in Section 4, this improvement means a gain by a factor of
1/a. At the same time, however, this also means a loss of
the linear acceleration factor in the form of 1/N. This phe-
nomenon is primarily due to the inherent properties of the
analytical method used, as we show in Appendix B.1. Note
that, under TD 2 and TD 1 the expected number of commu-
nication rounds for SCAFFLSA applied to federated TD(0)
algorithm scales, following (21), as

T = O
(
max

(
1

(1−γ)3/2ν ,
1+

√
Ec[∥θc⋆∥2]

ϵ(1−γ)ν
)
log
(
ψ0

ϵ2

))
,

which improves uniformly over the number of communica-
tions required by FedLSA that we presented in the previous
section. Nonetheless, the number of communication rounds
for SCAFFLSA still scales with the inverse of ϵ. This
seems to be due to the fact that our step-by-step analysis is
loose in high-precision regimes, where the step size is very
small. For this reason, we study in the rest of this section
another variant of SCAFFLSA, which is more adapted to a
block-by-block analysis, alike FedLSA.

Analysis under H 2. In the deterministic-temporal commu-
nication paradigm H2, agents average their local parameters
after a fixed number of local updates H . In this scenario, the
simplified analysis in Section 5 is not applicable. Instead,
we decompose the algorithm block-by-block. Similarly to
the analysis of FedLSA, we use (20) to describe the se-
quence of aggregated iterates as

θt+1 − θ⋆ =
1
N

∑N
c=1

[
Γ
(c,η)
t,1:H(θt − θ⋆)

+η
∑H
h=1Γ

(c,η)
t,h+1:H(ξct−ξc⋆)−η

∑H
h=1Γ

(c,η)
t,h+1:Hω

c(Zct,h)
]
,

where t is the integer part of k/H, and h = k mod H (we
restate the algorithm with these notations in Appendix B.2).
Using this expression, we can analyze SCAFFLSA under
H 2, by studying the following Lyapunov function

ψt = ∥θt − θ⋆∥2 + η2H2

N

∑N
c=1 ∥ξct − ξc⋆∥2 ,

which is defined as the error in θ⋆ estimation on communica-
tion rounds, as well as the average error on control variates.
We now state the convergence rate and iteration complexity
of Algorithm 2 under the more general Assumption A2.

Theorem 5.3. Assume A1, A2, H 2. Let η,H > 0 such that
η ≤ min(1/CA, η∞), and H ≤ min(a/32ηC2

A, 1/η, 1/ηa).
Set ξc0 = 0 for all c ∈ [N ]. Then we have

E[∥θT − θ⋆∥2] ≤
(
1− ηaH

4

)TE[ψ0] +
16η
a σ̄ω ,

where ψ0 = ∥θ0 − θ⋆∥2 + η2H2Ec[∥Āc(θc⋆ − θ⋆)∥2].
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Corollary 5.4. Let ϵ > 0. Assume ϵ2 ≤ 32σ̄ω

aCA
, a2 ≤

min(1, 32C2
A). Set η = O(min(η∞, aϵ

2/σ̄ω)). We have
E[∥θT − θ⋆∥2] ≤ ϵ2 when the number of communication is

T = O
(C2

A

a2 log
(
ψ0

ϵ2

))
,

with ψ0 = O(∥θ0 − θ⋆∥2 + a2

C2
A
Ec[∥Āc(θc⋆ − θ⋆)∥2]), and

the number of local updates

H = O
(
max

(
a

η∞ C2
A
, σ̄ω

ϵ2 C2
A

))
.

We prove these two statements in Appendix B.2. In Corol-
lary 5.4, we show that with small enough step-size, the total
number of communication depends only logarithmically on
the precision ϵ. This is in stark contrast with Algorithm 1,
where the necessity of controlling the bias’ magnitude pre-
vents from scaling H with 1/ϵ2. Thus, in high precision
regime (i.e.small ϵ and η), using control variates reduces
communication complexity compared to FedLSA. How-
ever, we note that, as in Corollary 5.2, we lose the linear
speed-up in 1/N. This result translates into the following
communication complexity bound for federated TD(0).

Corollary 5.5. Assume TD 1 and TD 2 and let 0 < ϵ ≤√
8Ec[1 + ∥θc⋆∥2]/((1− γ)ν). Then, in order to achieve

E[∥θT −θ⋆∥2] ≤ ϵ2, the required number of communication
for federated TD(0) algorithm is

T = O
(

1
(1−γ)2ν2 log

(
ψ0

ϵ2

))
,

where ψ0 = O(∥θ0 − θ⋆∥2 + (1− γ)2ν2Ec[∥θc⋆ − θ⋆∥2]).

Corollary 5.5 confirms that, when applied to TD(0), SCAF-
FLSA’s communication complexity depends only logarith-
mically on heterogeneity and on the desired precision. In
contrast with existing methods for federated TD(0) (Doan
et al., 2019; Jin et al., 2022; Wang et al., 2023), it converges
to the solution of system (1) even with many local steps.

6. Numerical Experiments
In this section, we illustrate the practical performance of our
two algorithms for different levels of heterogeneity. To this
end, we consider the classical Garnet problem (Archibald
et al., 1995), in the simplified version proposed by Geist et al.
(2014). These problems are characterized by the number of
states n, number of actions a, and branching factor b (i.e.
the number of neighbors of each state in the MDP). We set
these values to n = 30, a = 2 and b = 2, and aim, for
illustration, to evaluate the value function of the uniform
policy, that chooses a random action at each time step.

Low heterogeneity regime. We generate an instance of
Garnet with mentioned parameters, and perturb it by adding
small uniform noise εs,a,s′ ∼ U([0, ϵ]) to each non-zero
element of the transition matrix. Then we normalize each

0 20 40 60 80 100
Communication rounds

10 4

10 2

100

102

||
t

||2

(a) Low heterogeneity.

0 20 40 60 80 100
Communication rounds

10 5

10 3

10 1

101

103

||
t

||2

FedLSA
SCAFFLSA

(b) High heterogeneity.

Figure 1. Mean squared error for estimation of the global optimal
parameter of the value function, for FedLSA and SCAFFLSA
instantiated for TD(0) on Garnet problems. For each algorithm,
we plot the average MSE and standard deviation over 5 runs.

row so that they sum to 1. We generate N = 100 such
environments, with ϵ = 0.0002, and run Algorithms 1 and 2
with parameters η = 0.01, H = 10000 and N = 100.
We give the results in Figure 1(a), where we see that both
algorithms behave similarly. This is due to the fact that in the
low heterogeneity regime local iterations cause little client
drift, making bias small: there, the noise from stochastic
oracles dominates (i.e. ṽheter and ρ̄H are smaller than σ̄ε).

High heterogeneity regime. To simulate highly heteroge-
neous environments, we generate N = 100 independent
Garnet environments, with the same parameters as above.
We show the results in Figure 1(b), where the FedLSA stops
making progress due to heterogeneity bias, while SCAF-
FLSA continues towards the global solution of the problem,
until noise starts to dominate. Note that, according to the
theory, we could always decrease the step size of FedLSA
to obtain more precise results. However, this would require
more communication rounds, which is not always possible.

7. Conclusion
In this paper, we studied federated linear stochastic approxi-
mation, with local training and heterogeneous agents. We
analyzed the complexity of FedLSA algorithm. We care-
fully analyzed its bias, induced by local training, and showed
how to parameterize the algorithm to control it. We then pro-
posed SCAFFLSA, an algorithm that corrects FedLSA’s
bias with control variates, and studied its complexity. Both
methods are applied to federated TD learning with linear
function approximation, for which we give explicit commu-
nication complexity bounds. With our analysis of SCAF-
FLSA, we improve iteration and communication complexity
compared to FedLSA in terms of key problem parameters
and desired precision, but we lose the linear speed-up in
number of agents. The same problem appears in many
existing analyses of gradient-based federated learning algo-
rithms, making it a challenging future research direction.
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A. Analysis of Federated Linear Stochastic Approximation
For the analysis we need to define two filtration: F+

s,h := σ(Zct,k, t ≥ s, k ≥ h, 1 ≤ c ≤ N) (future events) and
F−
s,h := σ(Zct,k, t ≤ s, k ≤ h, 1 ≤ c ≤ N) (preceding events). Recall that the local LSA updates are written as

θct,h − θc⋆ = (I− ηA(Zct,h))(θ
c
t,h−1 − θc⋆)− ηεc(Zct,h) .

Performing H local steps and taking average, we end up with the decomposition (17), which we duplicate here for user’s
convenience:

θt − θ⋆ = θ̃
(tr)
t + θ̃

(bi,bi)
t + θ̃

(fl,bi)
t + θ̃

(fl)
t , (22)

where we have defined

θ̃
(tr)
t =

∏t
s=1 Γ̄

(η)
s,H{θ0 − θ⋆} , (23)

θ̃
(bi,bi)
t =

∑t
s=1

(
Γ̄
(η)
H

)t−s
ρ̄H ,

θ̃
(fl,bi)
t =

∑t
s=1

∏t
i=s+1 Γ̄

(η)
i,H τ̄s,H +∆

(η)
H,s,tρ̄H ,

θ̃
(fl)
t = η

∑t
s=1

∏t
i=s+1 Γ̄

(η)
i,H φ̄s,H .

Now we need to upper bound each of the terms in decomposition (22). This is done in a sequence of lemmas below: θ̃(fl)t
is bounded in Lemma A.1, θ̃(fl,bi)t in Lemma A.2, θ̃(tr)t in Lemma A.3, and θ̃(bi,bi)t in Lemma A.4. Then we combine the
bounds in order to state a version of Theorem 4.1 with explicit constants in Theorem A.5.

Lemma A.1. Assume A1 and A2. Then, for any step size η ∈ (0, η∞) it holds

E
[
∥θ̃(fl)t ∥2

]
≤ ησ̄ε
aN(1− e−2)

.

Proof. We start from the decomposition (23). With the definition of θ̃(fl)t and EF+
s+1,1

[{∏t
i=s+1 Γ̄

(η)
i,H

}
φ̄s,H

]
= 0, we

obtain that

E
[
∥θ̃(fl)t ∥2

]
= η2

t∑
s=1

E
[
∥
{ t∏
i=s+1

Γ̄
(η)
i,H

}
φ̄s,H∥2

]
.

Now, using the assumption A2 and Minkowski’s inequality, we obtain that

E1/2
[
∥
{ t∏
i=s+1

Γ̄
(η)
i,H

}
φ̄s,H∥2

]
≤ 1

N

N∑
c=1

E1/2∥
[
Γ̄
(c,η)
t,H

{ t−1∏
i=s+1

Γ̄
(η)
i,H

}
φ̄s,H∥2

] (a)

≤ (1− ηa)HE1/2
[
∥
{ t−1∏
i=s+1

Γ̄
(η)
i,H

}
φ̄s,H∥2

]
.

(24)
In (a) applied A2 conditionally on F−

t−1,H . Hence, by induction we get from the previous formulas that

E
[
∥θ̃(fl)t ∥2

]
≤ η2

t∑
s=1

(1− ηa)HE[∥φ̄s,H∥2] . (25)

Now we proceed with bounding E
[
∥φ̄s,H∥2

]
. Indeed, since the clients are independent, we get using (14) that

E
[
∥φ̄s,H∥2

]
=

1

N2

∑N

c=1
E
[
∥
∑H

h=1
Γ
(c,η)
s,h+1:Hε

c(Zcs,h)∥2
]

=
1

N2

∑N

c=1

[∑H

h=1
E
[
∥Γ(c,η)

s,h+1:Hε
c(Zcs,h)∥2

]]
≤ 1

N2

∑N

c=1

∑H

h=1
(1− ηa)2(H−h)E

[
∥εc(Zcs,h)∥2

]
.

Therefore, using (5) and the following inequality,

H−1∑
h=0

(1− ηa)2h ≤ H ∧ 1

ηa
, for all η ≥ 0, such that ηa ≤ 1,
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we get

E
[
∥φ̄s,H∥2

]
≤ 1

N

(
H ∧ 1

ηa

)
σ̄ε .

Plugging this inequality in (25), we get

E
[
∥θ̃(fl)t ∥2

]
≤ Ec[Tr(Σcε)]

N

(
η2H ∧ η

a

) t∑
s=1

[
(1− ηa)2H(t−s)]

≤ σ̄ε
N

(
η2H ∧ η

a

) 1

1− (1− ηa)2H

≤ ησ̄ε
aN

(ηaH ∧ 1)
1

1− e−2ηaH
,

where we used additionally
e−2x ≤ 1− x ≤ e−x , (26)

which is valid for x ∈ [0; 1/2]. Now it remains to notice that

x ∧ 1

1− e−2x
≤ 1

1− e−2

for any x > 0.

We proceed with analyzing the fluctuation of the true bias component of the error θt defined in (23). The first step towards
this is to obtain the respective bound for τ̄s,H , s ∈ {1, . . . , T}, where τ̄s,H is defined in (14). Now we provide an upper
bound for θ̃(fl,bi)t :
Lemma A.2. Assume A1 and A2. Then, for any step size η ∈ (0, η∞) it holds

E1/2
[
∥θ̃(fl,bi)t ∥2

]
≤
√

2ηṽheter

Na
+

2
√
Ec∥ΣcÃ∥∥ρ̄H∥

aH1/2N1/2
.

Proof. Recall that θ̃(fl,bi)t is given (see (23)) by

θ̃
(fl,bi)
t =

t∑
s=1

t∏
i=s+1

Γ̄
(η)
i,H τ̄s,H︸ ︷︷ ︸

T1

+

(
t∑

s=1

{ t∏
i=s+1

Γ̄
(η)
i,H

}
− (Γ̄

(η)
H )t−s

)
ρ̄H︸ ︷︷ ︸

T2

, (27)

where τ̄s,H and ρ̄H are defined in (14). We begin with bounding T1. In order to do it we first need to bound τ̄s,H . Since the
different agents are independent, we have

E[∥τ̄s,H∥2] = 1

N2

N∑
c=1

E[∥((I− ηĀc)H − Γ
(c,η)
s,1:H){θc⋆ − θ⋆}∥2] . (28)

Applying Lemma C.1 and the fact that
{
(I− ηĀc)h−1Ãc(Zcs,h)Γ

(c,η)
s,(h+1):H(θc⋆ − θ⋆)

}H
h=1

is a martingale-difference w.r.t.
F−
s,h, we get that

E[∥((I− ηĀc)H − Γ
(c,η)
s,1:H){θc⋆ − θ⋆}∥2]

= η2E[∥
H∑
h=1

(I− ηĀc)h−1Ãc(Zcs,h)Γ
(c,η)
s,(h+1):H{θc⋆ − θ⋆}∥2]

= η2
H∑
h=1

E[∥(I− ηĀc)h−1Ãc(Zcs,h)Γ
(c,η)
s,(h+1):H{θc⋆ − θ⋆}∥2]

≤ η2
H∑
h=1

(1− ηa)2(h−1){θc⋆ − θ⋆}⊤E[(Γ(c,η)
s,(h+1):H)⊤(Ãc(Zcs,h))

⊤Ãc(Zcs,h)Γ
(c,η)
s,(h+1):H ]{θc⋆ − θ⋆} .
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Using the tower property conditionally on F+
s,h+1, we get

E[(Γ(c,η)
s,(h+1):H)⊤(Ãc(Zcs,h))

⊤Ãc(Zcs,h)Γ
(c,η)
s,(h+1):H ] = E[(Γ(c,η)

s,(h+1):H)⊤Σc
Ã
Γ
(c,η)
s,(h+1):H ] ,

where Σc
Ã

is the noise covariance matrix defined in (6). Since for any vector u ∈ Rd we have ∥u∥Σc
Ã
≤ ∥Σc

Ã
∥1/2∥u∥, we

get

E[∥((I− ηĀc)H − Γ
(c,η)
s,1:H){θc⋆ − θ⋆}∥2] ≤ η2

H∑
h=1

(1− ηa)2(h−1)E
[
∥Γ(c,η)

s,(h+1):H{θc⋆ − θ⋆}∥2Σc
Ã

]
(29)

≤ η2∥Σc
Ã
∥

H∑
h=1

(1− ηa)2(h−1)E
[
∥Γ(c,η)

s,(h+1):H{θc⋆ − θ⋆}∥2
]

≤ Hη2(1− ηa)2(H−1)∥Σc
Ã
∥∥θc⋆ − θ⋆∥2 .

Combining the above bounds in (28) yields that

E
[
∥τ̄s,H∥2

]
≤
Hη2(1− ηa)2(H−1)

∑N
c=1 ∥ΣcÃ∥∥θc⋆ − θ⋆∥2

N2
. (30)

Thus, proceeding as in (24) together with (30), we get

E[∥T1∥2] =
∑t

s=1
E[∥

∏t

i=s+1
Γ̄
(η)
i,H τ̄s,H∥2]

≤
∑t

s=1

Hη2(1− ηa)2(H−1)
∑N
c=1 ∥ΣcÃ∥∥θc⋆ − θ⋆∥2

N2
(1− ηa)2H(t−s)

≤ Hη2(1− ηa)2(H−1)

(1− (1− ηa)2H)N
Ec[∥ΣcÃ∥∥θc⋆ − θ⋆∥2]

≤ η

aN(1− ηa)2
Haηe−2Haη

1− e−2Haη
Ec[∥ΣcÃ∥∥θc⋆ − θ⋆∥2]

≤ 2η

Na
Ec[∥ΣcÃ∥∥θc⋆ − θ⋆∥2] .

In the bound above we used (26) together with the bound

xe−2x

1− e−2x
≤ 1

2
, x ≥ 0 .

Now we bound the second part of θ̃(fl,bi)t in (27), that is, T2. To begin with, we start with applying Lemma C.1 and we get
for any s ∈ {1, . . . , t} and i ∈ {s+ 1, . . . , t}, that{ t∏

i=s+1

Γ̄
(η)
i,H

}
− (Γ̄

(η)
H )t−s)ρ̄H =

t∑
i=s+1

{ t∏
r=i+1

Γ̄
(η)
r,H

}
(Γ̄

(η)
i,H − Γ̄

(η)
H )(Γ̄

(η)
H )i−s−1ρ̄H .

Note that,

EF+
i+1,1 [

{ t∏
r=i+1

Γ̄
(η)
r,H

}
(Γ̄

(η)
i,H − Γ̄

(η)
H )(Γ̄

(η)
H )i−s−1ρ̄H ] = 0 (31)

Proceeding as in (29), we get using independence between agents for any u ∈ Rd,

E[∥(Γ̄(η)
i,H − Γ̄

(η)
H )u∥2] = 1

N2
E[∥

N∑
c=1

(Γ
(c,η)
s,1:H − (I− ηĀc)H)u∥2]

=
1

N2

N∑
c=1

E[∥(Γ(c,η)
s,1:H − (I− ηĀc)H)u∥2]

≤ Hη2(1− ηa)2(H−1)

N

(
1

N

N∑
c=1

∥Σc
Ã
∥

)
∥u∥2 .
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Hence, using (31), we get

E[∥
({ t∏
i=s+1

Γ̄
(η)
i,H

}
− (Γ̄

(η)
H )t−s

)
ρ̄H∥2] =

Hη2(1− ηa)2H(t−s)−2Ec∥ΣcÃ∥
N

∥ρ̄H∥2 .

Combining the above estimates in (27), and using Minkowski’s inequality, we get

E1/2[∥T2∥2] ≤
H1/2η

(1− ηa)N1/2

√
Ec∥ΣcÃ∥∥ρ̄H∥

t−1∑
s=1

(1− ηa)H(t−s)

≤ 2

aH1/2N1/2

Haηe−Haη

1− e−Haη

√
Ec∥ΣcÃ∥∥ρ̄H∥

≤ 2

aH1/2N1/2

√
Ec∥ΣcÃ∥∥ρ̄H∥ ,

where we used that ηa ≤ 1/2 and
xe−x

1− e−x
≤ 1 , x ≥ 0 .

and the statement follows.

Lemma A.3. Assume A1 and A2. Then for any step size η ∈ (0, η∞) we have

E1/2[∥θ̃(tr)t ∥2] ≤ (1− ηa)tH∥θ0 − θ⋆∥

Proof. Proceeding as in (24) for any u ∈ Rd we have

E1/2[∥
t∏

s=1

Γ̄
(η)
s,Hu∥

2] ≤ (1− ηa)tH∥u∥

Using this result for u = θ0 − θ⋆ we get the statement.

Lemma A.4. Assume A1 and A2. Then for any η ∈ (0, η∞) we have

∥θ̃(bi,bi)t − (I− Γ̄
(η)
H )−1ρ̄H∥ ≤ (1− ηa)tH∥(I− Γ̄

(η)
H )−1∥∥ρ̄H∥

Proof. Using A2 and Minkowski’s inequalitty, we get

∥θ̃(bi,bi)t − (I− Γ̄
(η)
H )−1ρ̄H∥ = ∥(I− Γ̄

(η)
H )−1(Γ̄

(η)
H )tρ̄H∥

≤ ∥(I− Γ̄
(η)
H )−1∥∥(Γ̄(η)

H )tρ̄H∥

≤ ∥(I− Γ̄
(η)
H )−1∥ 1

N

N∑
c=1

∥(I− ηĀc)H(Γ̄
(η)
H )t−1ρ̄H∥

≤ (1− ηa)H∥(I− Γ̄
(η)
H )−1∥∥(Γ̄(η)

H )t−1ρ̄H∥

and the statement follows.

Theorem A.5. Assume A1 and A2. Then for any step size η ∈ (0, η∞) it holds that

E1/2
[
∥θt − θ̃

(bi,bi)
t − θ⋆∥2

]
≤
√

ησ̄ε
aN(1− e−2)

+

√
2ηṽheter

Na
+

2
√

Ec∥ΣcÃ∥∥ρ̄H∥

aH1/2N1/2
+ (1− ηa)tH∥θ0 − θ⋆∥ , (32)

where the bias θ̃(bi,bi)t converges to (I− Γ̄
(η)
H )−1ρ̄H at a rate

∥θ̃(bi,bi)t − (I− Γ̄
(η)
H )−1ρ̄H∥ ≤ (1− ηa)tH∥(I− Γ̄

(η)
H )−1∥∥ρ̄H∥ .
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Proof. Proof follows by combining the results Lemma A.1-Lemma A.4 above.

Corollary A.6. Assume A1 and A2. Let H = 1, then for any 0 < ϵ < 1, in order to achieve E
[
∥θT − θ⋆∥2

]
≤ ϵ2 the

required number of communications is

T = O
(
ṽheter ∨ σ̄ε
Na2ϵ2

log
∥θ0 − θ⋆∥

ϵ

)
number of communications, setting the step size

η0 =
aNϵ2

ṽheter ∨ σ̄ε
. (33)

Proof. Bounding the first two terms in decomposition (32) we get that the step size should satisfy

η ≤ aNϵ2

ṽheter ∨ σ̄ε
.

From the last term we have

t ≥ 1

aη
log

∥θ0 − θ⋆∥
ϵ

≥ ṽheter ∨ σ̄ε
Na2ϵ2

log
∥θ0 − θ⋆∥

ϵ

Corollary A.7. Assume A1 and A2. For any 0 ≤ ϵ ≤ C−1
A Ec∥θc⋆−θ⋆∥

a ∨
(√

ṽheter∨σ̄εEc∥θc⋆−θ⋆∥
a

)2/5
in order to achieve

E
[
∥θT − θ⋆∥2

]
< ϵ2 the required number of communications is

T = O
(
Ec∥θc⋆ − θ⋆∥

a2ϵ
log

∥θ0 − θ⋆∥
ϵ

)
, (34)

setting the step size

η = O
(

aNϵ2

ṽheter ∨ σ̄ε

)
and number of local iterations

H = O
(

ṽheter ∨ σ̄ε
NϵEc∥θc⋆ − θ⋆∥

)
Proof. We aim to bound separately all the terms in the r.h.s. of Theorem 4.1. Note that it requires to set η ∈ (0; η0) with η0
given in (33) in order to fulfill the bounds √

ηṽheter

aN
≲ ε ,

√
ησ̄ε
aN

≲ ε .

Now, we should bound the bias term

E1/2[∥θ̃(bi,bi)t ∥2] ≤ (1 + (1− ηa)tH)∥(I− Γ̄
(η)
H )−1ρ̄H∥ ≤ 2∥(I− Γ̄

(η)
H )−1ρ̄H∥ .

Thus, using the Neuman series, we can bound the norm of the term above as

∥(I− Γ̄
(η)
H )−1ρ̄H∥ = ∥

∞∑
k=0

(Γ̄
(η)
H )kρ̄H∥ ≤

∞∑
k=0

(1− ηa)Hk∥ρ̄H∥ ≤ ∥ρ̄H∥
1− (1− ηa)H

.

Hence, using the bound of (16), we get

E1/2[∥θ̃(bi,bi)t ∥2] ≤ 2∥ρ̄H∥
1− (1− ηa)H

≤ ηaH

1− (1− ηa)H
ηHEc[exp(ηH∥Āc∥)∥θc⋆ − θ⋆∥]

a

≤ 2ηHEc[exp(ηH∥Āc∥)∥θc⋆ − θ⋆∥]
a

≲
ηHEc[∥θc⋆ − θ⋆∥]

a
,
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Algorithm 3 SCAFFLSA-H 1: Stochastic Controlled FedLSA with probabilistic communication
Input: η > 0, θ0, ξc0 ∈ Rd, T,N,H, p > 0
Set: K = T/p
for k = 1 to K do

for c = 1 to N do
Receive Zck and perform local update:

θ̂ck = θ̂ck−1 − η(Ac(Zck)θ̂
c
k−1 − bc(Zck)− ξck−1)

end for
Draw Bk ∼ Bernoulli(p)
if Bk = 1 then

Average local iterates: θck = 1
N

∑N
c=1 θ̂

c
k

Update: ξck = ξck−1 +
p
η (θ

c
k − θ̂ck)

else
Set: θck = θ̂ck, ξck = ξck−1

end if
end for

where we used the fact that the step size η is chosen in order to satisfy ηH CA ≤ 1. Thus in order to fulfill E1/2[∥θ̃(bi,bi)t ∥2] ≲
ε we need to choose η and H such that

ηHEc[∥θc⋆ − θ⋆∥] ≤ εa .

It remains to bound the term

√
Ec∥Σc

Ã
∥∥ρ̄H∥

aH1/2N1/2 . Using the bound of (16), we get√
Ec∥ΣcÃ∥∥ρ̄H∥

aH1/2N1/2
≤
√

η

N
×

√
Ec∥ΣcÃ∥(ηH)3/2

a
≲ ε5/2

√
1

ṽheter ∨ σ̄ε
a

Ec[∥θc⋆ − θ⋆∥]
.

Hence, it remains to combine the bounds above in order to get the sample complexity result (34).

Corollary A.8. Assume TD 1 and TD 2. Then for any

0 ≤ ϵ ≤
2
(√

2(1+γ)
√

Ec∥θc⋆−θ⋆∥2∨(1+Ec[∥θ⋆∥2])Ec[∥θc⋆−θ⋆∥]
)2/5

(1−γ)ν ∨ 2Ec[∥θc⋆−θ⋆∥]
(1−γ)ν(1+γ) ,

in order to achieve E
[
∥θT − θ⋆∥2

]
< ϵ2 the required number of communications for federated TD(0) algorithm is

T = O
((

1
(1−γ)2ν ∨ Ec[∥θc⋆−θ⋆∥]

(1−γ)2ν2ϵ

)
log ∥θ0−θ⋆∥

ϵ

)
.

B. Federated Linear Stochastic Approximation with Control Variates

B.1. Probabilistic communication (Assumption H 1)

To mitigate the bias caused by local training, we may use control variates. We assume in this section that at each iteration
we choose, with probability p, whether agents should communicate or not. Consider the following algorithm, where for
k = 1, . . . , T/p, we compute

θ̂ck = θck−1 − η(Ac(Zck)θ
c
k−1 − bc(Zck)− ξck−1)

i.e. we update the local parameters with LSA adjusted with a control variate ξck−1. This control variate is initialized to zero,
and updated after each communication round. We draw a Bernoulli random variable Bk with success probability p and then
update the parameter as follows:

θck =

{
θ̄k = 1

N

∑N
c=1 θ̂

c
k Bk = 1

θ̂ck Bk = 0

17



We then update the control variate
ξck = ξck−1 +

p

η
(θck − θ̂ck). (35)

where we have set ξc0 = 0. For clarity, we restate Algorithm 2 under this assumption as Algorithm 3.

By construction, θck is the current value of parameter the parameter at time k. The control variate stays constant between two
successive consensus steps. Note that, for all k ∈ N,

∑N
c=1 ξ

c
k = 0. Indeed, if Bk = 0, for any c ∈ {1, . . . , N}, ξck = ξck−1.

Additionally, if Bk = 1, we have from (35) that

1

N

N∑
c=1

ξck =
1

N

N∑
c=1

ξck−1 +
p

η
(θ̄k − θ̄k) = 0 .

We now proceed to the proof, which amounts to constructing a common Lyapunov function for the sequences {θck}k∈N and
{ξck}k∈N. Define the Lyapunov function,

ψk =
1

N

N∑
c=1

∥θck − θ⋆∥2 +
η2

p2
1

N

N∑
c=1

∥ξck − ξc⋆∥2 ,

where θ⋆ is the solution of Āθ⋆ = b̄, and ξc⋆ = Āc(θ⋆ − θc⋆). A natural measure of heterogeneity is then given by

∆heter =
1

N

N∑
c=1

∥ξc⋆∥2 =
1

N

N∑
c=1

∥Āc(θc⋆ − θ⋆)∥2 .

Lemma B.1 (One step progress). Assume A1 and A2(2). Assume that η ≤ 1
2L . The iterates of the algorithm described

above satisfy

E[ψk] ≤
(
1−min

(
ηa, p2

))
E[ψk−1] +

2η2

N

N∑
c=1

Tr(Σcε) .

Proof. Decomposition of the update. Remark that the update can be reformulated as

θ̂ck − θ⋆ = (I− ηAc(Zck))(θ
c
k−1 − θ⋆) + η(ξck−1 − ξc⋆)− ηωc(Zck) , (36)

where ωc(z) = Ãc(z)θ⋆ − b̃c(z). This comes from the fact that, for all z,

bc(z) + ξck−1 = b̄c + b̃c(z) + ξck−1

= Ācθc⋆ + b̃c(z) + ξck−1

= Ācθ⋆ + b̃c(z) + ξck−1 − ξc⋆

= Ac(z)θ⋆ − Ãc(z)θ⋆ + b̃c(z) + ξck−1 − ξc⋆

= Ac(z)θ⋆ − ωc(z) + ξck−1 − ξc⋆ .

Expression of communication steps. Using that
∑N
c=1 ξ

c
k−1 = 0 and

∑N
c=1 ξ

c
⋆ = 0, we get

1

N

N∑
c=1

∥θck − θ⋆∥2 = 1{1}(Bk)∥θ̄k − θ⋆∥2 + 1{0}(Bk)
1

N

N∑
c=1

∥θ̂ck − θ⋆∥2

= 1{1}(Bk)∥
1

N

N∑
c=1

(θ̂ck −
η

p
ξck−1)−

1

N

N∑
c=1

(θ⋆ −
η

p
ξc⋆)∥2 + 1{0}(Bk)

1

N

N∑
c=1

∥θ̂ck − θ⋆∥2 .

The first term can be upper bounded by using Lemma C.4, which gives

1{1}(Bk)∥θ̄k − θ⋆∥2 = 1{1}(Bk)

{
1

N

N∑
c=1

∥θ̂ck −
η

p
(ξck−1 − ξc⋆)− θ⋆∥2 −

1

N

N∑
c=1

∥θ̄k − (θ̂ck −
η

p
ξck−1) +

η

p
ξc⋆∥2

}

= 1{1}(Bk)

{
1

N

N∑
c=1

∥θ̂ck −
η

p
(ξck−1 − ξc⋆)− θ⋆∥2 −

η2

p2
1

N

N∑
c=1

∥ξck − ξc⋆∥2
}
.

18



We now expand the first term in the right-hand side of the previous equation. This gives

1

N

N∑
c=1

∥θ̂ck −
η

p
(ξck−1 − ξc⋆)− θ⋆∥2 =

1

N

N∑
c=1

{
∥θ̂ck − θ⋆∥2 −

2η

p
⟨ξck−1 − ξc⋆ , θ̂

c
k − θ⋆⟩+

η2

p2
∥ξck−1 − ξc⋆∥2

}
,

which yields

1{1}(Bk) {ψk} = 1{1}(Bk)

{
∥θ̄k − θ⋆∥2 +

η2

p2
1

N

N∑
c=1

∥ξck − ξc⋆∥2
}

= 1{1}(Bk)

{
1

N

N∑
c=1

∥θ̂ck − θ⋆∥2 −
2η

p
⟨ξck−1 − ξc⋆ , θ̂

c
k − θ⋆⟩+

η2

p2
1

N

N∑
c=1

∥ξck−1 − ξc⋆∥2
}
. (37)

On the other hand, note that

1{0}(Bk) {ψk} = 1{0}(Bk)

{
1

N

N∑
c=1

∥θck − θ⋆∥2 +
η2

p2
1

N

N∑
c=1

∥ξck − ξc⋆∥2
}

= 1{0}(Bk)

{
1

N

N∑
c=1

∥θ̂ck − θ⋆∥2 +
η2

p2
1

N

N∑
c=1

∥ξck−1 − ξc⋆∥2
}
. (38)

By combining (38) and (37), we get

ψk =
1

N

N∑
c=1

∥θck − θ⋆∥2 +
η2

p2
1

N

N∑
c=1

∥ξck − ξc⋆∥2

=
1

N

N∑
c=1

∥θ̂ck − θ⋆∥2 − 2
η

p
1{1}(Bk)⟨ξck−1 − ξc⋆ , θ̂

c
k − θ⋆⟩+

η2

p2
1

N

N∑
c=1

∥ξck−1 − ξc⋆∥2 . (39)

Progress in local updates. We now bound the first term of the sum in (39). For c ∈ [N ], (36) gives

∥θ̂ck − θ⋆∥2 = ∥(I− ηAc(Zck))(θ
c
k−1 − θ⋆) + η(ξck−1 − ξc⋆)− ηωc(Zck)∥2

= ∥(I− ηAc(Zck)){θck − θ⋆} − ηωc(Zck)∥2 + η2∥ξck−1 − ξc⋆∥2

+ 2η⟨ξck−1 − ξc⋆ , (I− ηAc(Zck)){θck − θ⋆} − ηωc(Zck)⟩

= ∥(I− ηAc(Zck)){θck − θ⋆} − ηωc(Zck))∥2︸ ︷︷ ︸
T1

+2η⟨ξck−1 − ξc⋆ , θ̂
c
k − θ⋆⟩ − η2∥ξck−1 − ξc⋆∥2 . (40)

Define the σ-algebra Gk−1 = σ(Bs, s ≤ k − 1, Zcs , s ≤ k − 1, c ∈ [N ]). We now bound the conditional expectation of T1

EGk−1 [T1] = EGk−1
[
∥(I− ηAc(Zck)){θck − θ⋆}∥2 − 2η⟨(I− ηAc(Zck)){θck − θ⋆} , ωc(Zck)⟩+ η2∥ωc(Zck)∥2

]
= EGk−1

[
∥(I− ηAc(Zck)){θck − θ⋆}∥2 + 2η2⟨Ac(Zck){θck − θ⋆} , ωc(Zck)⟩+ η2∥ωc(Zck)∥2

]
,

where we used the fact that ⟨I , ωc(Zck)⟩ = 0. Using Young’s inequality for products, and Lemma C.5 with η ≤ 1
2L and

u = θck − θ⋆, we then obtain

EGk−1 [T1] ≤ EGk−1
[
∥(I− ηAc(Zck)){θck − θ⋆}∥2 + η2∥Ac(Zck){θck − θ⋆}∥2 + η2∥ωc(Zck)∥2 + η2∥ωc(Zck)∥2

]
≤ (1− ηa)∥θck − θ⋆∥2 − η( 1

L − 2η)EGk−1
[
∥Ac(Zck){θck − θ⋆}∥2

]
+ 2η2EGk−1

[
∥ωc(Zck)∥2

]
. (41)

Plugging (41) in (40) and using the assumption η ≤ 1
2L , we obtain

EGk−1

[
∥θ̂ck − θ⋆∥2 − 2η⟨ξck−1 − ξc⋆ , θ̂

c
k − θ⋆⟩

]
≤ (1− ηa)∥θck − θ⋆∥2 − η2∥ξck−1 − ξc⋆∥2 + 2η2 Tr(Σcε) . (42)
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Bounding the Lyapunov function. Taking the condtional expectation of (39) and using (42) for c = 1 to N , we obtain the
following bound on the Lyapunov function

EGk−1 [ψk] =
1

N

N∑
c=1

EGk−1

[
∥θ̂ck − θ⋆∥2 − 2η⟨ξck−1 − ξc⋆ , θ̂

c
k − θ⋆⟩

]
+
η2

p2
1

N

N∑
c=1

∥ξck−1 − ξc⋆∥2

≤ 1

N

N∑
c=1

[
(1− ηa)∥θck − θ⋆∥2 − η2∥ξck−1 − ξc⋆∥2 + 2η2 Tr(Σcε)

]
+
η2

p2
1

N

N∑
c=1

∥ξck−1 − ξc⋆∥2

= (1− ηa)
1

N

N∑
c=1

∥θck − θ⋆∥2 + (1− p2)
η2

p2
1

N

N∑
c=1

∥ξck−1 − ξc⋆∥2 +
2η2

N

N∑
c=1

Tr(Σcε) ,

and the result of the Lemma follows from the Tower property.

Theorem B.2 (Convergence rate). Assume A1 and A2(2). Then, for any η ≤ 1
2L and T > 0, it holds

E[ψK ] ≤
(
1− ζ

)K (∥θ0 − θ⋆∥2 +
η2

p2
∆heter

)
+

2η2

ζ

1

N

N∑
c=1

Tr(Σcε) ,

where ζ = min
(
ηa, p2

)
.

Corollary B.3 (Iteration complexity). Let ϵ > 0. Set η = min
(

1
2L ,

ϵ2a
8σ̄ε

)
and p =

√
ηa (so that ζ = ηa). Then, E[ψK ] ≤ ϵ2

as long as the number of iterations is

K ≥ max

(
2L

a
,
4σ̄ε
ϵ2a2

)
log

(
∥θ0 − θ⋆∥2 +min

(
1

2aL ,
ϵ2

8σ̄ε

)
∆heter

2ϵ2

)
,

which corresponds to an expected number of communication rounds

T ≥ max

(√
2L

a
,

√
4σ̄ε
ϵ2a2

)
log

(
∥θ0 − θ⋆∥2 +min

(
1

2aL ,
ϵ2

8σ̄ε

)
∆heter

2ϵ2

)
.

Theorem B.4 (No linear speedup in the probabilistic communication setting with control variates). The bounds obtained in
Theorem B.2 are minimax optimal up to constants that are independent from the problem. Precisely, for every (p, η) there
exists a FLSA problem such that

E[ψK ] =
(
1− ζ

)K (∥θ0 − θ⋆∥2 +
η2

p2
∆heter

)
+

2η2

ζ
σ̄ε ,

where we have defined ζ = min
(
2ηa, p2

)
.

Proof. Define for all c ∈ [N ],

Āc = aI , b̄c = bcu ,

where u is a vector whom all coordinates are equal to 1. We also consider the sequence of i.i.d random variables (Zck) such
that that for all c ∈ [N ]and 0 ≤ t ≤ T , Zck follows a Rademacher distribution. Moreover, we define

Ac(Zck) = Āc , bc(Zck) = b̄c + Zcku .

In particular this implies

ωc(z) = Zcku .
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Algorithm 4 SCAFFLSA-H 2: Stochastic Controlled FedLSA with deterministic communication
Input: η > 0, θ0, ξc0 ∈ Rd, T,N,H
Set: K = TH
for t = 1 to T do

for c = 1 to N do
for h = 1 to H do

Receive Zct,h and perform local update:

θ̂ct,h = θ̂ct,h−1 − η(Ac(Zct,h)θ̂
c
t,h−1 − bc(Zct,h)− ξct )

end for
Average local iterates: θct+1 = 1

N

∑N
c=1 θ̂

c
t,H

Update: ξct+1 = ξct +
1
ηH (θct+1 − θ̂ct,H)

end for
end for

We follow the same proof of Lemma B.1 until the chain of equalities breaks. Thereby, we start from

E[ψk] = E[
N∑
c=1

∥θck − θ⋆∥2 +
η2

p2

N∑
c=1

∥ξck − ξc⋆∥2]

= E[
N∑
c=1

∥(I− ηAc(Zck)){θck−1 − θ⋆} − ηωc(Zck))∥2 + (1− p2)
η2

p2

N∑
c=1

∥ξck−1 − ξc⋆∥2]

= E[
N∑
c=1

∥(I− ηĀc){θck−1 − θ⋆} − ηωc(Zck))∥2 + (1− p2)
η2

p2

N∑
c=1

∥ξck−1 − ξc⋆∥2]

= E[
N∑
c=1

(1− ηa)2∥θck−1 − θ⋆∥2 + η2∥ωc(Zck)∥2 + (1− p2)
η2

p2

N∑
c=1

∥ξck−1 − ξc⋆∥2]

where we used that Ac(Zck) = Āc. Unrolling the recursion gives the desired result.

B.2. Deterministic communication (Assumption H 2)

Consider the same algorithm as in the previous part, except that the variables Bk are chosen such that Bk = 1 if k is a
multiple of H and Bk = 1 otherwise. This amounts to making blocks of local updates of constant size H . For clarity, we
thus define t as the integer part of k/H and h = k mod H . Thus, for a given t ≥ 0, each agent c ∈ [N ] performs H local
updates as follows

θ̂ct,h = θ̂ct,h−1 − η(Ac(Zt,h)θ̂
c
t,h−1 − bc(Zt,h)− ξct ) ,

where θ̂t,0 = θt and control variates ξct remain constant. At the end of each block, the global iterate and control variates are
updated as

θt+1 =
1

N

N∑
c=1

θct,H , ξct+1 = ξct +
1

ηH
(θt+1 − θ̂ct,H) .

For clarity, we restate Algorithm 2 under this assumption in Algorithm 4. We Consider the Lyapunov function,

ψt = ∥θt − θ⋆∥2 +
η2H2

N

N∑
c=1

∥ξct − ξc⋆∥2 ,

which is naturally defined as the error in θ⋆ estimation on communication rounds, and the average error on the control
variates.
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Theorem B.5. Assume A1 and A2. Let η,H such that ηaH ≤ 1, ηH ≤ 1, η∥Āc∥ ≤ 1, and η ≤ a
16Hmaxc∈[N]{∥Āc∥2+∥Σc

Ã
∥} ,

and set ξc0 = 0 for all c ∈ [N ]. Then, the sequence (ψt)t∈N satisfies, for all t ≥ 0,

E[ψt] ≤
(
1− ηaH

4

)t
E[ψ0] +

16η

a
σ̄ε , (43)

where ψ0 = ∥θ0 − θ⋆∥2 + η2H2

N

∑N
c=1 ∥Āc(θc⋆ − θ⋆)∥2.

Proof. Expression of local updates. Similarly to (36), we rewrite the local updates as, for t ≥ 0, h ≥ 0, c ∈ [N ],

θ̂ct,h − θ⋆ = (I− ηAc(Zct,h))(θ̂
c
t,h−1 − θ⋆) + η(ξct − ξc⋆)− ηωc(Zct,h) ,

where ωc(z) = Ãc(z)θ⋆ − b̃c(z). Unrolling this recursion, we get, for each c ∈ [N ],

θct,H − θ⋆ = Γ
(c,η)
t,1:H(θt − θ⋆) + η

H∑
h=1

Γ
(c,η)
t,h+1:H(ξct − ξc⋆)− η

H∑
h=1

Γ
(c,η)
t,h+1:Hω

c(Zct,h) . (44)

Expression of the Lyapunov function. Since the sum control variates is
∑N
t=1 ξ

c
t =

∑N
t=1 ξ

c
⋆ = 0, we have θt+1 =

1
N

∑N
c=1 θ

c
t,H = 1

N

∑N
c=1 θ

c
t,H − ηH(ξct − ξc⋆). Applying Lemma C.4, we obtain

∥θt+1 − θ⋆∥2 = ∥ 1

N

N∑
c=1

θ̂ct,H − θ⋆ − ηH(ξct − ξc⋆)∥2

=
1

N

N∑
c=1

∥θ̂ct,H − θ⋆ − ηH(ξct − ξc⋆)∥2 −
1

N

N∑
c=1

∥θt+1 − θct,H + ηH(ξct − ξc⋆)∥2

=
1

N

N∑
c=1

∥θ̂ct,H − θ⋆ − ηH(ξct − ξc⋆)∥2 −
η2H2

N

N∑
c=1

∥ξct+1 − ξc⋆∥2 ,

since ξct+1 = ξct +
1
ηH (θt+1 − θct,H). Adding η2H2

N

∑N
c=1 ∥ξct+1 − ξc⋆∥2 on both sides and using (44), we obtain

ψt+1 =
1

N

N∑
c=1

∥θ̂ct,H − θ⋆ − ηH(ξct − ξc⋆)∥2

=
1

N

N∑
c=1

∥Γ(c,η)
t,1:H(θt − θ⋆) + η

H∑
h=1

Γ
(c,η)
t,h+1:H(ξct − ξc⋆)− η

H∑
h=1

Γ
(c,η)
t,h+1:Hω

c(Zct,h)− ηH(ξct − ξc⋆)∥2

=
1

N

N∑
c=1

∥Γ(c,η)
t,1:H(θt − θ⋆)− ηH(I− 1

HC
c
η,H)(ξct − ξc⋆)− η

H∑
h=1

Γ
(c,η)
t,h+1:Hω

c(Zct,h)∥2 ,

where we defined Ccη,H =
∑H
h=1 Γ

(c,η)
t,h+1:H . Expanding the norm gives

ψt+1 =
1

N

N∑
c=1

∥Γ(c,η)
t,1:H(θt − θ⋆)− ηH(I− 1

HC
c
η,H)(ξct − ξc⋆)∥2︸ ︷︷ ︸

T c
0

+ ∥η
H∑
h=1

Γ
(c,η)
t,h+1:Hω

c(Zct,h)∥2︸ ︷︷ ︸
T c
1

−2η⟨Γ(c,η)
t,1:H(θt − θ⋆) ,

H∑
h=1

Γ
(c,η)
t,h+1:Hω

c(Zct,h)⟩︸ ︷︷ ︸
T c
2

+2ηH⟨(I− 1
HC

c
η,H)(ξct − ξc⋆) , η

H∑
h=1

Γ
(c,η)
t,h+1:Hω

c(Zct,h)⟩︸ ︷︷ ︸
T c
3

.

(45)

In the following, we will use the filtration of all events up to step t, Ft := σ(Zcs,h, 0 ≤ s ≤ t, 0 ≤ h ≤ H, 1 ≤ c ≤ N).
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Bounding T c0 . Using Young’s inequality with α0 > 0, and Assumption A2, we can bound

E[T c0 ] ≤ E[(1 + α0)∥Γ(c,η)
t,1:H(θt − θ⋆)∥2] + (1 + α−1

0 )η2H2E[∥(I− 1
HC

c
η,H)(ξct − ξc⋆)∥2]

≤ (1 + α0)(1− ηa)2HE[∥θt − θ⋆∥2] + (1 + α−1
0 )η2H2E[∥(I− 1

HC
c
η,H)(ξct − ξc⋆)∥2] .

Using Lemma C.6 and Young’s inequality again, and since η∥Āc∥ ≤ 1 we can bound

E[∥(I− 1
HC

c
η,H)(ξct − ξc⋆)∥2] = E[EFt−1

[
∥(I− 1

HC
c
η,H)(ξct − ξc⋆)∥2

]
]

≤ E[EFt−1
[
∥I− 1

HC
c
η,H∥2

]
E[∥ξct − ξc⋆∥2]

≤
(

1
2 [exp((H − 1)η∥Āc∥)− 1]2 + 2η2(H − 1)2∥Σc

Ã
∥
)
E[∥ξct − ξc⋆∥2]

≤
(
2η2(H − 1)2∥Āc∥2 + 2η2(H − 1)2∥Σc

Ã
∥
)
E[∥ξct − ξc⋆∥2] .

We thus obtain:

E[T c0 ] ≤ (1 + α0)(1− ηa)2HE[∥θt − θ⋆∥2] + 2(1 + α−1
0 )(∥Āc∥2 + ∥Σcε∥)η4H4E[∥ξct − ξc⋆∥2] . (46)

Bounding T c1 . Since the Zt,hc are all independent, we have:

E[T c1 ] = E[∥η
H∑
h=1

Γ
(c,η)
t,h+1:Hω

c(Zct,h)∥2] = η2
H∑
h=1

E[∥Γ(c,η)
t,h+1:Hω

c(Zct,h)∥2] .

Using Assumption A2, we bound

E[T c1 ] ≤ η2
H∑
h=1

E[∥ωc(Zct,h)∥2] = η2H Tr(Σcε) . (47)

Bounding T c2 . Since (I− ηĀc)H is independent from all Zt,h, we have for any α2 > 0,

|EFt−1 [T c2 ] | = |2ηEFt−1

[
⟨(Γ(c,η)

t,1:H − (I− ηĀc)H)(θt − θ⋆) ,
∑H

h=1
Γ
(c,η)
t,h+1:Hω

c(Zct,h)⟩
]
|

≤ α2EFt−1

[
∥(Γ(c,η)

t,1:H − (I− ηĀc)H)(θt − θ⋆)∥2
]
+
η2

α2
EFt−1

[
∥
∑H

h=1
Γ
(c,η)
t,h+1:Hω

c(Zct,h)∥2
]
. (48)

To bound the expectation of the first term in (48), we bound the following conditional expectation for u ∈ Rd, using
Minkowski’s inequality and Lemma C.1,

E1/2[∥(Γ(c,η)
t,1:H − (I− ηĀc)H)u∥2] ≤ E1/2[∥η

H∑
h=1

Γ
(c,η)
t,1:h−1(A

c(Zt,h)− Āc)(I− ηĀc)H−h−1u∥2]

≤ η

H∑
h=1

E1/2[∥Γ(c,η)
t,1:h−1(A

c(Zt,h)− Āc)(I− ηĀc)H−h−1u∥2] .

From assumption A2, we then obtain

E1/2[∥(Γ(c,η)
t,1:H − (I− ηĀc)H)u∥2] ≤ η

H∑
h=1

(1− ηa)h−1E1/2[∥(Ac(Zt,h)− Āc)(I− ηĀc)H−h−1u∥2]

≤ η

H∑
h=1

(1− ηa)h−1∥Σc
Ã
∥1/2∥(I− ηĀc)H−h−1u∥2

≤ η

H∑
h=1

(1− ηa)H∥Σc
Ã
∥1/2∥u∥2 ≤ ηH∥Σc

Ã
∥1/2∥u∥ . (49)
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We then bound the second term of (48), using the independence of the Zct,h,

E[∥
∑H

h=1
Γ
(c,η)
t,h+1:Hω

c(Zct,h)∥2] =
∑H

h=1
E∥Γ(c,η)

t,h+1:Hω
c(Zct,h)∥2 ≤

∑H

h=1
E[∥ωc(Zct,h)∥2] = H Tr(Σcε) , (50)

which leads to the following inequality

E[T c2 ] ≤ α2η
2H2∥Σc

Ã
∥E[∥θt − θ⋆∥2] + η2H

α2
Tr(Σcε) . (51)

Bounding T c3 . Let C̄cη,H =
∑H
h=1(I− ηĀc)H−h. Since I and C̄cη,H are independent from all Zt,h, we have, for any α3 > 0,

|EFt−1 [T c3 ] | = 2|EFt−1

[
⟨η(C̄cη,H − Ccη,H)(ξct − ξc⋆) , η

H∑
h=1

Γ
(c,η)
t,h+1:Hω

c(Zct,h)⟩

]
|

≤ α3η
2EFt−1

[
∥(C̄cη,H − Ccη,H)(ξct − ξc⋆)∥2

]
+
η2

α3
EFt−1

[
∥
H∑
h=1

Γ
(c,η)
t,h+1:Hω

c(Zct,h)∥2
]
. (52)

From (50), we can bound the expectation of the second term by η2H
α3

Tr(Σε). We now proceed as in the derivation of (49) to
bound the first term from (52). For any vector u ∈ Rd, Minkowski’s inequality and Lemma C.2 give

E1/2[∥(C̄cη,H − Ccη,H)u∥2] = E1/2[∥
H∑
h=1

(Γ
(c,η)
t,h+1:H − (I− ηĀc)H−h)u∥2]

= ηE1/2[∥
H∑
h=1

H∑
h′=h+1

Γ
(c,η)
t,h+1:h′−1(A

c(Zt,h′)− Āc)(I− ηĀc)H−h′
u∥2]

= η

H∑
h=1

H∑
h′=h+1

E1/2[∥Γ(c,η)
t,h+1:h′−1(A

c(Zt,h′)− Āc)(I− ηĀc)H−h′
u∥2] .

Then, using assumption A2, we obtain

E1/2[∥(C̄cη,H − Ccη,H)u∥2] ≤ η

H∑
h=1

H∑
h′=h+1

(1− ηa)H−h−1∥Σc
Ã
∥1/2∥u∥ ≤ η

2
H(H − 1)∥Σc

Ã
∥1/2∥u∥ .

We thus have the following bound

E[T c3 ] ≤
η4

4
α3H

2(H − 1)2∥Σc
Ã
∥E[∥ξct − ξc⋆∥2] +

η2H

α3
Tr(Σcε) . (53)

Bounding ψt+1. We can now bound ψt+1 by plugging (46), (47), (51) and (53) in the expectation of (45)

E[ψt+1] =
1

N

N∑
c=1

E[T c0 + T c1 + T c2 + T c3 ]

≤
(
(1 + α0)(1− ηa)2H + α2η

2H2Ec[∥ΣcÃ∥]
)
E[∥θt − θ⋆∥2]

+
1

N

N∑
c=1

(
2(1 + α−1

0 )(∥Āc∥2 + ∥Σc
Ã
∥) + α3

4 ∥Σc
Ã
∥
)
η4H4E[∥ξct − ξc⋆∥2] +

(
1 + 1

α2
+ 1

α3

)
η2Hσ̄ε

≤
(
(1 + α0)(1− ηa)2H + α2η

2H2Ec[∥ΣcÃ∥]
)
E[∥θt − θ⋆∥2]

+

(
2(1 + α−1

0 ) max
c∈[N ]

{∥Āc∥2 + ∥Σc
Ã
∥}+ α3

4 max
c∈[N ]

{∥Σc
Ã
∥}
)
η4H4 1

N

N∑
c=1

E[∥ξct − ξc⋆∥2]

+
(
1 + 1

α2
+ 1

α3

)
η2Hσ̄ε . (54)
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Now, we set α0 = ηaH
2 , α2 = a

4ηHEc[∥Σc
Ã
∥] , α3 = 1. Since ηaH ≤ 1, ηH ≤ 1, and η ≤ a

16Hmaxc∈[N]{∥Āc∥2+∥Σc
Ã
∥} we

have

(1 + α0)(1− ηa)2H + α2η
2H2Ec[∥ΣcÃ∥] ≤ (1 + ηaH

2 )(1− ηaH) + ηaH
4 ≤ 1− ηaH

4 ,

η2H2(2(1 + α−1
0 ) max

c∈[N ]
{∥Āc∥2 + ∥Σc

Ã
∥}+ α3

4 max
c∈[N ]

{∥Σc
Ã
∥}) ≤ η2H2(3 + 4

ηaH ) max
c∈[N ]

{∥Āc∥2 + ∥Σc
Ã
∥} ≤ 1

2 ,

1 + 1
α2

+ 1
α3

≤ 2 +
2ηHEc[∥Σc

Ã
∥]

a ≤ 4 .

Using these inequalities, we can simplify (54) as

E[ψt+1] ≤
(
1− ηaH

4

)
E[∥θt − θ⋆∥2] + 1

2η
2H2E[∥ξ − ξ⋆∥2] + 4η2Hσ̄ε

≤
(
1−min

(
1
2 ,

ηaH
4

))
E[ψt] + 4η2Hσ̄ε

=
(
1− ηaH

4

)
E[ψt] + 4η2Hσ̄ε ,

where the last inequality comes from ηaH ≤ 1. Applying this inequality iteratively gives

E[ψT ] ≤
(
1− ηaH

4

)T
E[ψ0] +

16η

a
σ̄ε ,

which is the result of the theorem.

Corollary B.6. Let ϵ > 0. Assume ϵ2 ≤ 32σ̄ε

amaxc∈[N]{∥Āc∥} , a ≤ 1 and a2 ≤ 16maxc∈[N ]{∥Āc∥2 + ∥Σc
Ã
∥}. In order to

achieve ∥θT − θ⋆∥2 ≤ ϵ2, the required number of communication is

T =
64maxc∈[N ]{∥Āc∥2 + ∥Σc

Ã
∥}

a2
log
(2∥θ0 − θ⋆∥2 + a2

256maxc∈[N]{∥Āc∥2+∥Σc
Ã
∥}2∆heter

ϵ2

)
,

using the step size

η = min

(
η∞,

aϵ2

32σ̄ε

)
,

and the number of local iterations

H =
amax

(
1

16η∞
, 2σ̄ε

aϵ2

)
maxc∈[N ]{∥Āc∥2 + ∥Σc

Ã
∥}

.

Proof. First, we require that the second term of the right-hand side of (43) is bounded by ϵ2

2 , that is 16η
a σ̄ε ≤ ϵ2

2 . This
requires that

η ≤ min

(
η∞,

aϵ2

32σ̄ε

)
,

which also ensures that η ≤ 1
∥Āc∥ for all c ∈ [N ] since ϵ2 ≤ 32σ̄ε

amaxc∈[N]{∥Āc∥} . We thus set η = min
(
η∞,

aϵ2

32σ̄ε

)
, and look

at the largest H possible. The conditions ηaH ≤ 1, ηH ≤ 1, and η ≤ a
16Hmaxc∈[N]{∥Āc∥2+∥Σc

Ã
∥} give that

H ≤ min

(
1

η
,
1

aη
,

a

16ηmaxc∈[N ]{∥Āc∥2 + ∥Σc
Ã
∥}

)

=
1

η
min

(
1,

1

a
,

a

16maxc∈[N ]{∥Āc∥2 + ∥Σc
Ã
∥}

)
.
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Since a ≤ 1 and a2 ≤ 16maxc∈[N ]{∥Āc∥2 + ∥Σc
Ã
∥}, the smallest term of the minimum is the third one and we can take

H =
a

16ηmaxc∈[N ]{∥Āc∥2 + ∥Σc
Ã
∥}

=
amax

(
1

16η∞
, 2σ̄ε

aϵ2

)
maxc∈[N ]{∥Āc∥2 + ∥Σc

Ã
∥}

.

To obtain E[ψT ] ≤ ϵ2, we need to take T so that (1− ηaH
4 )Tψ0 ≤ ϵ2

2 , which gives

T ≥ 4

ηaH
log(

2ψ0

ϵ2
) =

64maxc∈[N ]{∥Āc∥2 + ∥Σc
Ã
∥}

a2
log
(2∥θ0 − θ⋆∥2 + a2

256maxc∈[N]{∥Āc∥2+∥Σc
Ã
∥}2∆heter

ϵ2

)
,

and the result follows.

C. Technical proofs
Lemma C.1. For any matrix-valued sequences (Un)n∈N, (Vn)n∈N and for any M ∈ N, it holds that:

M∏
k=1

Uk −
M∏
k=1

Vk =

M∑
k=1

{
k−1∏
j=1

Uj}(Uk − Vk){
M∏

j=k+1

Vj} .

Lemma C.2 (Stability of the deterministic product). Assume A2. Then, for any u ∈ Rd and h ∈ N,

∥(I− ηĀc)hu∥ ≤ (1− ηa)h∥u∥ .

Proof. Since (Zct,h)1≤h≤H are i.i.d, we get

E
[
Γ
(c,η)
t,1:hu

]
= E

[∏h
l=1(I− ηA(Zct,l))u

]
=
∏h
l=1 E

[
I− ηA(Zct,l)

]
u = (I− ηĀc)hu .

The proof then follows from the elementary inequality: for any square-integrable random vector U , ∥E[U ]∥ ≤ (E[∥U∥2])1/2.

Lemma C.3. Recall that ρ̄H = 1
N

∑N
c=1(I− (I− ηĀc)H){θc⋆ − θ⋆}, it satisfies

∥ρ̄H∥ ≤ η2H2

N

N∑
c=1

exp(ηH∥Āc∥)∥θc⋆ − θ⋆∥ (55)

Proof. Using the identity,

1− (1− u)H = Hu− u2
H−2∑
k=0

(−1)k
(

H

k + 2

)
uk

and the inequality
(
H
k+2

)
≤
(
H−2
k

)
H2, we get that∣∣∣∣∣

H−2∑
k=0

(−1)k
(

H

k + 2

)
uk

∣∣∣∣∣ ≤ H2

2

H−2∑
k=0

(
H − 2

k

)
|u|k ≤ H2

2
exp((H − 2)|u|)

Using (15), we finally get (55).

Lemma C.4. Let (xi)Ni=1, and (yi)
N
i=1 be N vectors of Rd. Denote x̄N = (1/N)

∑N
i=1 xi and ȳN = (1/N)

∑N
i=1 yi.

Then,

N∥x̄N − ȳN∥2 =

N∑
i=1

∥xi − yi∥2 −
N∑
i=1

∥xi − x̄N − (yi − ȳN )∥2
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Proof. Define x = [x⊤1 , . . . , x
⊤
N ]⊤ and y = [y⊤1 , . . . , y

⊤
N ]⊤ ∈ RNd. Define by P the orthogonal projector on

E =
{
x ∈ RNd : x = [x⊤, . . . , x⊤]⊤, x ∈ Rd

}
.

We show that Px = [x̄⊤N , . . . , x̄
⊤
N ]⊤. Note indeed that for any z = [z⊤, . . . , z⊤]⊤ ∈ E , we get (with a slight abuse of

notations, ⟨· , ·⟩ denotes the scalar product in RNd and Rd)

⟨x−Px , z⟩ =
N∑
i=1

{⟨xi , z⟩ − ⟨x̄N , z⟩} = 0 .

The proof follows from Pythagoras identity which shows that

∥Px−Py ∥2 = ∥ x− y ∥2 − ∥(x−Px)− (y−Py ∥2

Lemma C.5. Assume A3. Let Z be a random variable taking values in a state space (Z,Z) with distribution πc. Set η ≥ 0,
then for any vector u ∈ Rd, we have

E[∥(I− ηAc(Z))u∥2] ≤ (1− ηa)∥u∥2 − η( 1
L − η)E[∥Ac(Z)u∥2] .

Proof. First, remark that

∥(I− ηAc(Z))u∥2 = u⊤(I− ηAc(Z))⊤(I− ηAc(Z))u

= u⊤
(
I− 2η( 12 (A

c(Z) +Ac(Z)⊤)) + η2Ac(Z)⊤Ac(Z)
)
u .

Since we have E[ 12 (A
c(Z) +Ac(Z)⊤)] ≽ aI and E[ 12 (A

c(Z) +Ac(Z)⊤)] ≽ 1
LE[A

c(Z)⊤Ac(Z)], we obtain

E[∥(I− ηAc(Z))u∥2] = u⊤u− 2ηu⊤E[ 12 (A
c(Z) +Ac(Z)⊤)]u+ η2u⊤E[Ac(Z)⊤Ac(Z)]u

≤ ∥u∥2 − ηa∥u∥2 − η
Lu

⊤E[Ac(Z)⊤Ac(Z)]u+ η2u⊤E[Ac(Z)⊤Ac(Z)]u

= (1− ηa)∥u∥2 − η( 1
L − η)u⊤E[Ac(Z)⊤Ac(Z)]u ,

which gives the result.

Lemma C.6. Let H > 0, η > 0 such that 0 ≤ η∥Āc∥ ≤ 1 for all c ∈ [N ]. Then it holds that

E1/2[∥I− C
(t,c)
η,H ∥2] ≤ 1

2 [exp((H − 1)η∥Āc∥)− 1] + η(H − 1)∥Σc
Ã
∥1/2 .

Proof. Using Minkowski’s inequality, we get

E[∥I− C
(t,c)
η,H ∥2] = E[∥I− 1

H

∑H

h=1
Γ
(c,η)
t,h+1:H∥2] (56)

≤ ∥I− 1
H

∑H

h=1
(I− ηĀc)h−1∥ +

1

H
E1/2[∥

∑H

h=1
(I− ηĀc)H+1−h − Γ

(c,η)
t,h+1:H∥2] .

Let’s now establish an upper bound for the first term in the previous inequality

∥I− 1
H

∑H

h=1
(I− ηĀc)h−1∥ = ∥I− (Āc)−1

ηH (I− (I− ηĀc)H∥

= ∥I− (Āc)−1

ηH (I−
∑H

h=0

(
H
h

)
(−ηĀc)h)∥

= ∥I− (Āc)−1

ηH

∑H

h=1

(
H
h

)
(−ηĀc)h∥

= ∥I− 1
H

∑H−1

h=0

(
H
h+1

)
(−ηĀc)h∥

= ∥ 1
H

∑H−1

h=1

(
H
h+1

)
(−ηĀc)h∥ .
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Using triangle inequality, we obtain

∥I− 1

H
Ccη,H∥ ≤ 1

H

∑H−1

h=1

(
H
h+1

)
∥ηĀc∥h .

Furthermore

1
H

∑H−1

h=1

(
H
h+1

)
∥ηĀc∥h ≤ 1

2

∑H−1

h=1

(
H−1
h

)
∥ηĀc∥h ≤ 1

2 [exp((H − 1)η∥Āc∥)− 1] .

Applying Minkowski’s inequality and Lemma C.1 to the second term on the right side of the inequality (56) yields

1

H
E1/2[∥

∑H

h=1
(I− ηĀc)H+1−h − Γ

(c,η)
t,h+1:H∥2]

≤ 1

H

∑H

h=1
E1/2[∥(I− ηĀc)H+1−h − Γ

(c,η)
t,h+1:H∥2]

=
η

H

∑H

h=1
E1/2[∥

∑H

k=h+1
(I− ηĀc)k−1−(h+1)(Ac(Zct,k)− Āc)Γ

(c,η)
t,k+1:H∥2]

≤ η

H

∑H

h=1

∑H

k=h+1
E1/2∥(I− ηĀc)k−1−(h+1)(Ac(Zct,k)− Āc)Γ

(c,η)
t,k+1:H∥2]

≤ η

H

∑H

h=1
(H − h)(1− ηa)H−h−1∥Σc

Ã
∥1/2

≤ η(H − 1)∥Σc
Ã
∥1/2 .

D. TD learning as a federated LSA problem
In this section we specify TD(0) as a particular instance of the LSA algorithm. In the setting of linear functional
approximation the problem of estimating V π(s) reduces to the problem of estimating θ⋆ ∈ Rd, which can be done
via the LSA procedure. For the agent c ∈ [N ] the k-th step randomness is given by the tuple Zck = (Sck, A

c
k, S

c
k+1). With

slight abuse of notation, we write Ac
t,h instead of A(Zct,h), and bct,h instead of b(Zct,h). Then the corresponding LSA update

equation with constant step size η can be written as

θct,h = θct,h−1 − η(Ac
t,hθ

c
t,h−1 − bc

t,h) ,

where Ac
t,h and bct,h are given by

Ac
t,h = ϕ(Sct,h){ϕ(Sct,h)− γϕ(Sct,h+1)}⊤ ,

bct,h = ϕ(Sct,h)r
c(Sct,h, A

c
t,h) .

(57)

Respective specialisation of FedLSA algorithm is stated in Algorithm 5.

The corresponding local agent’s system writes as Ācθc⋆ = b̄c, where we have, respectively,

Āc = Es∼µc,s′∼Pπ(·|s)[ϕ(s){ϕ(s)− γϕ(s′)}⊤]
b̄c = Es∼µc,a∼π(·|s)[ϕ(s)r

c(s, a)] .

The authors of (Wang et al., 2023) study the corresponding virtual MDP dynamics with P̃ = N−1
∑N
c=1 PcMDP, r̃ =

N−1
∑N
c=1 r

c. Next, introducing the invariant distribution of the kernel µ̃ of the averaged state kernel

P̃π(B|s) = N−1
N∑
c=1

∫
A
PcMDP(B|s, a)π(da|s) ,

we have θ̃ as an optimal parameter corresponding to the system Ãθ̃ = b̃. Here

Ã = Es∼µ̃,s′∼P̃π(·|s)[ϕ(s){ϕ(s)− γϕ(s′)}⊤]

b̃ = Es∼µ̃,a∼π(·|s)[ϕ(s)r̃(s, a)] .
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Algorithm 5 FedLSA applied to TD(0) setting with linear functional approximation
Input: η > 0, θ0 ∈ Rd, T,N,H > 0
for t = 0 to T − 1 do

Initialize θt,0 = θt
for c = 1 to N do

for h = 1 to H do
Receive tuple (Sct,h, A

c
t,h, S

c
t,h+1) following TD 1 and perform local update:

θct,h = θct,h−1 − η(Ac
t,hθ

c
t,h−1 − bct,h) ,

where Ac
t,h and bct,h are given in (57)

end for
end for

Average: θt+1 = 1
N

∑N
c=1 θ

c
t,H (58)

end for

D.1. Proof of Lemma 3.1.

The proof below closely follows (Patil et al., 2023) (Lemma 7) and (Samsonov et al., 2023) (Lemma 1). Indeed, with TD 2
and (12) we get

∥Ac
1∥ ≤ (1 + γ)

almost surely, which implies ∥Āc∥ ≤ 1 + γ for any c ∈ [N ]. This implies, using the definition of Σc
Ã

, that

∥Σc
Ã
∥ = ∥E[{Ac

1}⊤Ac
1]− {Āc}⊤Āc∥ ≤ 2(1 + γ)2 ,

and the bound (9) follows. Next we observe that

Tr(Σcε) = E[∥(Ac
1 − Āc)θc⋆ − (bc1 − b̄c)∥2] ≤ 2{θc⋆}⊤E[{Ac

1}⊤Ac
1]θ

c
⋆ + 2E[(rs(Ss0 , Ac0))2 Tr(φ(Sc0)φ⊤(Sc0))]

≤ 2(1 + γ)2{θc⋆}⊤Σφ[c]θc⋆ + 2 ≤ 2(1 + γ)2
(
∥θc⋆∥2 + 1

)
,

where the latter inequality follows from TD 2, and thus (10) holds. In order to check the last equation (11), we note first
that the bound for a and η∞ readily follows from the ones presented in (Patil et al., 2023)[Lemma 5] and (Patil et al.,
2023)[Lemma 7]. To check assumption A3, note first that, with s ∼ µc, s′ ∼ Pπ(·|s), we have

Ac + {Ac}⊤ = φ(s){φ(s)− γφ(s′)}⊤ + {φ(s)− γφ(s′)}φ(s)⊤ = 2φ(s)φ(s)⊤ − γ{φ(s)φ(s′)⊤ + φ(s′)φ(s)⊤}
⪯ (2 + γ)φ(s)φ(s)⊤ + γφ(s′)φ(s′)⊤ ,

where we additionally used that
−(uu⊤ + vv⊤) ⪯ uv⊤ + vu⊤ ⪯ (uu⊤ + vv⊤)

for any u, v ∈ Rd. Thus, we get that
E[Ac + {Ac}⊤] ⪯ 2(1 + γ)Σcφ .

The rest of the proof follows from the fact that

E[{Ac
1}⊤Ac

1] ⪰ {Āc}⊤Āc ⪰ (1− γ)2λminΣ
c
φ ,

which is proven e.g. in (Li et al., 2023a) (Lemma 5) or (Samsonov et al., 2023) (Lemma 7).
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