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Record Age Pain ... Drug Sick
Ty T 11 How to study influence of
2 4 1 . ,
ﬁg T S possibly many features x;'s
O B S on an outcome y?
#n 13 1 0 1

One way: model Iog(%) as

hys(x) = wy +wy - xi+ -+ wy - X,

Crucial fact: w* is computed from the data!
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— Trained Classification Model

) + T+ The resulting model:
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+ s * is (quite) accurate
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oo A * contains info on data
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Privacy Issues

Membership inference*:

“ determine whether a given
record was part of a model’s
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*R. Shokri et al. “Membership Inference Attacks Against Machine Learning Models”. 2017.
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Guaranteeing Privacy

Perturb the predictor:

B (X)) = (Wo +10) + (wg +11) - X1+ -+ (W, + 1) - X

/ noise gives plausible deniability — better privacy

x noisy predictions — lower accuracy

=> tension between privacy and utility
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How Strong is the Protection?

A : D — wis (€, 0)-Differentially Private*

P(A(D) € S) < exp(e) - P(A(D') € S) + &

for all D, D' that differ on one element (D ~ D')

Rule of thumb: € <1, § = o(1/|D|)

*C. Dwork. “Differential Privacy”. 2006.
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1. Gaussian mechanism: G ,2(D) = f(D) + N(0; o%)
To guarantee (e, 9)-DP:

«  Compute sensitivity Af = supp_p ||[f(D) — f(D)]2
(862 log(1/9)
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Gaussian mechanism: G¢ ,»(D) = f(D) + N(0; 0?)
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— privacy guarantees decrease to (O(v/Te), O(T4))-DP

Amplification by sampling



Ingredients for building (¢, §)-DP algorithms

1.

2.

Gaussian mechanism: G¢ ,»(D) = f(D) + N(0; 0?)
Composition of DP algorithms

Amplification by sampling
Sample a fraction g of D's elements and use the Gaussian mechanism

— privacy guarantees increase to (O(ge), O(gd))-DP



OUTLINE

|. Classical private optimization
II. Private Stochastic CD for imbalanced problems

[Il. Private Greedy CD for sparse problems
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Empirical Risk Minimization

Note: Most results also hold for composite ERM with Proximal algorithms

How to solve ERM privately?

= Ay T — 7 v Ay 7
* smooth: ||V{(w; d) — Vi{(w';d)|| < M||w — w/||
* Lipschitz:  ||[V{(w;d)| <A




DP-SGD*1

Differentially Private Stochastic Gradient Descent

Fort=0to T — 1:
* Choose a data record d|

+ Draw noise nt ~ N(0; o%1,)

« Update w'™ = w! — ~f (VA(wi; d}) + 1)

Return w’

*S. Song et al. “Stochastic Gradient Descent with Differentially Private Updates”. 2013.

fR. Bassily et al. “Private ERM: Efficient Algorithms and Tight Error Bounds”. 2014.
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Privacy of DP-SGD*: 1

For (¢, §)-differential privacy we need

AT
0°=0|—55] ., where |[V{|| <A
n%e
+ Noise increases with number of iterations
« Sampling amplifies privacy

*S. Song et al. “Stochastic Gradient Descent with Differentially Private Updates”. 2013. 10
IR, Bassily et al. “Private ERM: Efficient Algorithms and Tight Error Bounds”. 2014.



Utility of DP-SGD*

When f is p-strongly-convex w.r.t. the norm || - |2,

E(f( SGD) f( (/\ log(T) 4 p/\21702g21/5)>

optimization error Jprlvacy erro;&

*R. Bassily et al. “Private ERM: Efficient Algorithms and Tight Error Bounds”. 2014. 1 1




Utility of DP-SGD*

When f is p-strongly-convex w.r.t. the norm || - |2,
E(f(w**P) - f(w")) = 0( P g7 pe(L)) )

choose T to balance the two &

*R. Bassily et al. “Private ERM: Efficient Algorithms and Tight Error Bounds”. 2014. 1 1




Utility of DP-SGD*

When f is p-strongly-convex w.r.t. the norm || - |2,

E(f(WSGD) . f(W*)) _ @( p/? |0g(:2)€|§g(1/5) )

1

= and the result is tight (under these assumptions)

*R. Bassily et al. “Private ERM: Efficient Algorithms and Tight Error Bounds”. 2014. 1 1



The Problem of DP-SGD

It fails on imbalanced problems...
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We need to refine measure of regularity of f:
* smoothness:

IV(w +t) = VI(w)|| < M][t]
« Lipschitzness:

IVE(w)[] < A
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We need to refine measure of regularity of f:
« coordinate-wise smoothness:

|Vjf(w + te) — Vif (w)| < Mj[t]
« coordinate-wise Lipschitzness:

Vif(w)| <L

Important: M; < M, and L; <A
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We can now use a more appropriate measure of our space!
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We can now use a more appropriate measure of our space!

: \‘\N

5
VM1 - x1

p q 1
Scaled norm: ||w|jpmq = (Z Mj2]|/|/j|q) 9 for g € {1,2}

p 14



And measure strong convexity appropriately:

* pup-strong-convexity w.r.t || - ||
Uw; d) > w'; d) + (VW' d),w —w) + 2Z||lw — w|]?

+ JUp.g-Strong-convexity w.r.t || - || m.q
(w; d) > (' d) + (VW d), w — w') + 222w — w3, ,

It holds that ppm2 > p2

p q 1
Using the scaled norm: ||w|lyq = <Z M? \qu\) 9 for g € {1,2} 15
j=1



Differentially Private Coordinate Descent*

Fort=0to T —1:

« Choose a coordinate j € [p]
« Draw noise 77; ~ J\/(O; 0?)
+ Update th+1 = w; —;(V;f(w) +nj), typically v; o M%

o _ 1N\ T t
Return w™ = > w

*P. Mangold et al. “Differentially Private Coordinate Descent for Composite ERM"”. 2022. 16



Differentially Private Coordinate Descent*

Fort=0to T —1:

« Choose a coordinate j € [p]
+ Draw noise nf ~ N(O 0 (n262)>
* Update th+1 — th — i (Vf(w") + nj) typically 7 o M%

o _ 1N\ T t
Return w™ = > w

*P. Mangold et al. “Differentially Private Coordinate Descent for Composite ERM"”. 2022. 16
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Utility of DP-CD

For pum o-strongly-convex functions

plog(1/4)

Hm,2 n2e

E(f(w<P) — f(w*)) < o(

Recall that for DP-SGD:

L1 n%€?

E(f(w5P) — f(w")) < o(

HLHﬁ,n)

p|og(1/5)A2>
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Numerical lllustration

DP-CD uses more appropriate step sizes

* Regularized logistic

regression
* Raw (imbalanced) data
-@- DP-CD « n = 45,312 records
—A— DP-SGD

*

I I I I I I
0 10 20 30 40 50
Passes on data

p = 8 features

e=186=1/n

*
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Relative Error to
Non-Private Opt

Numerical lllustration
DP-CD does not require amplification by sampling

* Regularized logistic
1071 regression
10-2- + Standardized data
« n = 45,312 records
1073 4
T T T | T T * p = 8 features
0 10 20 30 40 50
Passes on data « e=1 0= l/n2

19



Practical Considerations

« Clipping:
clip(Vjf(w), ;) = sign(V,f(w)) min(|V;f(w)], G)
— guarantees that A(V;f) < 2G

. M:
— scaling C; = ,/ <=+ C works well
g J Ej Mj

* Estimation of constants: M;'s contain sensitive information...

20



Choice of updated coordinate?

In DP-CD, we chose updated coordinate as:

* Choose a coordinate j € [p]

To propose something different, we need another DP ingredient:
report noisy max

Jj =argmax|V;f(w') 4+ (y| , with ¢; ~ Lap (0; o (%))

J'€lpl

21



Differentially Private Greedy CD

Fort=0to T — 1:

+ Draw noise nf, (f ~ Lap <0 O (n2€2))

+ Choose j = arg max Vi f(w )+ G|
J'€lp]

+ Update w*! = w' — 4;(V;f(w') 4 nj)

Return w6l = w T

22



DP-SGD

Gradient entry

15

1.0

0.5

0.0

-0.5

noise:

Coordinate

DP-GCD noise:

Gradient entry
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Utility of DP-GCD

When £ is pup1-strongly convex w.r.t || - ||m1
SGD €)Y _ max 08(1/p) IOg(1/5)
B(F(w*) — (")) = o( il )

Recall that for DP-SGD:

2 ne?
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Utility of DP-GCD

Problems with sparse solution

When f is pup o-strongly-convex w.r.t || - ||y, and solution
is (close to) T-sparse

2 2 o -
E(f(w*¢P) — f(w*)) = o( Lines ™ 08(1/p) log(1/9) )

Mminﬂ%ﬂg

25



Numerical lllustration

DP-GCD can focus on relevant coordinates

+ Regularized logistic
848 5x107? & ) g
50 regression
=9
03 B + Standardized data
2 & 4x10
© <
g8 « n = 2,600 records

0 10 20
Passes on data

*

p = 501 features
e=186=1/n

*

~#— DP-SGD =—&— DP-CD —@— DP-GCD



DP-SGD =#— DP-CD —@— DP-GCD
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DP-SGD =#&— DP-CD —@— DP-GCD
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Conclusion

Private coordinate descent methods can exploit:

« imbalance in parameter scales and variations
*« imbalance/sparsity of the solution

« adapt to underlying structure
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Conclusion

Private coordinate descent methods can exploit:

« imbalance in parameter scales and variations
*« imbalance/sparsity of the solution
« adapt to underlying structure

Open questions: adaptive step sizes and clipping, better
sampling of coordinates, analyze proximal greedy CD... 78



Thank youl

See the papers:

- P. Mangold, A. Bellet, J. Salmon, and M. Tommasi. “Differentially Private Coordinate
Descent for Composite ERM”. 2022 (ICML)

- P. Mangold, A. Bellet, J. Salmon, and M. Tommasi. “High-Dimensional Private ERM by
Greedy Coordinate Descent”. 2023 (AISTATS)
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