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—A— Gradient Descent
= Greedy Coordinate Descent
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Differentially Private ERM

wP" ~ arg min f(w Zf w; d;)

welRP

such that wP" is (¢, §)-DP



Differential Privacy

A : D — wPVis (€, §)-Differentially Private

Pr[A(D) € S] < ePr[A(D’) € S] + 6

(where D and D’ differ on one element)



Private Gradient Descent

For T iterations:

wtl = w' —n (VF(w') + N (0?1,))

vV Tp

ne

Noise scale: o
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Utility: H[f(w) — f*] = 7

assuming f and Vf are Lipschitz



Utility: E[f(w) — f*] =

assuming f and Vf are Lipschitz

» Convex: O (@>

ne

» Strongly-Convex: O( 52)
n’e



Can we choose updates
“more wisely" ?



Private Greedy CD

For T iterations:

wi = wi —n; (V;f(w') + Lap(};))

J J

where j = argmax |V f(w') + Lap(Aj)|
J'elp]



Private Greedy CD

For T iterations:

wi = wi —n; (V;f(w') + Lap(};))

J J

where j = argmax |V f(w') + Lap(Aj)|
J'€lpl
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Noise scale: A; o , independent on the dimension!!
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Utility: H[f(w) — f*] = 7

assuming f and Vf are Lipschitz
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Utility: H[f(w) — f*] = 7

assuming f and Vf are Lipschitz

For imbalanced objective/problems with sparse solutions:
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Utility: H[f(w) — f*] = 7

assuming f and Vf are Lipschitz

For imbalanced objective/problems with sparse solutions:

~ (1
» Convex: O ( 8 p)

ne

~ (|
» Strongly-Convex: O ( o8 p)

n2e?
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When is the dependence logarithmic?

» Imbalanced problems:

p 1/2
j=1 J
» strong-convexity constant w.r.t. ¢1-norm is large

> [w® — w1 = W) — wi| is small
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When is the dependence logarithmic?

» Imbalanced problems:

p 1/2
j=1 J
» strong-convexity constant w.r.t. ¢1-norm is large

> [w® — w1 = W) — wi| is small
» Sparse solutions (strongly-convex loss):

» w* has few non-zero coordinates
» few total number of iterations/iterates remain sparse
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Logistic Regression (n = 1000, p = 100)
w* ~ lognormal(o = 2)P
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Passes on data
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Wrap up

» Private Greedy CD provably works!
» It can “bypass’ ambient dimension

» In fact, GCD adapts to problems geometry
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Thank youl

For more details, preprint online:

https://arxiv.org/abs/2207.01560

14


https://arxiv.org/abs/2207.01560

