
High-Dimensional Private ERM
by Greedy Coordinate Descent

Paul Mangold1, Aurélien Bellet1, Joseph Salmon2, Marc Tommasi1

1Inria Lille 2Univ. Montepellier

3PML Workshop @Meta

November 9, 2022

50 0 50 100 150 200 250 300
40

30

20

10

0

10

20

30

10000

10000

15000

20000

25000

30000

35000

Empirical Risk Minimization:

min
w∈Rp

f (w) =
1

n

n∑
i=1

ℓ(w ; di)

1

50 0 50 100 150 200 250 300
40

30

20

10

0

10

20

30

10000

10000

15000

20000

25000

30000

35000

Gradient Descent

1

50 0 50 100 150 200 250 300
40

30

20

10

0

10

20

30

10000

10000

15000

20000

25000

30000

35000

Gradient Descent
Greedy Coordinate Descent

1

Differentially Private ERM

wpriv ≈ arg min
w∈Rp

f (w) =
1

n

n∑
i=1

ℓ(w ; di)

such that wpriv is (ϵ, δ)-DP

2

Differential Privacy

A : D 7→ wpriv is (ϵ, δ)-Differentially Private

Pr [A(D) ∈ S] ≤ eϵPr [A(D ′) ∈ S] + δ

(where D and D ′ differ on one element)

3

Private Gradient Descent

For T iterations:

w t+1 = w t − η
(
∇f (w t) +N (σ21p)

)
Noise scale: σ ∝

√
Tp
nϵ

4

50 0 50 100 150 200 250 300
40

30

20

10

0

10

20

30

10000

10000

15000

20000

25000

30000

35000

Private Gradient Descent

5

Utility: E[f (w)− f ∗] = ?
assuming f and ∇f are Lipschitz

▶ Convex: Õ

(√
p

nϵ

)
▶ Strongly-Convex: Õ

(p
n2ϵ2

)

6

Utility: E[f (w)− f ∗] = ?
assuming f and ∇f are Lipschitz

▶ Convex: Õ

(√
p

nϵ

)
▶ Strongly-Convex: Õ

(p
n2ϵ2

)

6

Can we choose updates
“more wisely”?

7

Private Greedy CD

For T iterations:

w t+1
j = w t

j − ηj
(
∇jf (w t) + Lap(λj)

)
where j = argmax

j ′∈[p]
|∇j ′f (w t) + Lap(λj ′)|

Noise scale: λj ∝
√

T
nϵ

, independent on the dimension!!

8

Private Greedy CD

For T iterations:

w t+1
j = w t

j − ηj
(
∇jf (w t) + Lap(λj)

)
where j = argmax

j ′∈[p]
|∇j ′f (w t) + Lap(λj ′)|

Noise scale: λj ∝
√

T
nϵ

, independent on the dimension!!
8

50 0 50 100 150 200 250 300
40

30

20

10

0

10

20

30

10000

10000

15000

20000

25000

30000

35000

Private Gradient Descent
Private Greedy Coordinate Descent

9

Utility: E[f (w)− f ∗] = ?
assuming f and ∇f are Lipschitz

For imbalanced objective/problems with sparse solutions:

▶ Convex: Õ

(
log p
nϵ

)
▶ Strongly-Convex: Õ

(
log p
n2ϵ2

)

10

Utility: E[f (w)− f ∗] = ?
assuming f and ∇f are Lipschitz

For imbalanced objective/problems with sparse solutions:

▶ Convex: Õ

(
log p
nϵ

)
▶ Strongly-Convex: Õ

(
log p
n2ϵ2

)

10

Utility: E[f (w)− f ∗] = ?
assuming f and ∇f are Lipschitz

For imbalanced objective/problems with sparse solutions:

▶ Convex: Õ

(
log p
nϵ

)
▶ Strongly-Convex: Õ

(
log p
n2ϵ2

)
10

When is the dependence logarithmic?

▶ Imbalanced problems:

▶ ∥w 0 − w ∗∥L,1 =
∑p

j=1 L
1/2
j |w 0

j − w ∗
j | is small

▶ strong-convexity constant w.r.t. ℓ1-norm is large

▶ Sparse solutions (strongly-convex loss):

▶ w ∗ has few non-zero coordinates

▶ few total number of iterations/iterates remain sparse

11

When is the dependence logarithmic?

▶ Imbalanced problems:

▶ ∥w 0 − w ∗∥L,1 =
∑p

j=1 L
1/2
j |w 0

j − w ∗
j | is small

▶ strong-convexity constant w.r.t. ℓ1-norm is large

▶ Sparse solutions (strongly-convex loss):

▶ w ∗ has few non-zero coordinates

▶ few total number of iterations/iterates remain sparse

11

Logistic Regression (n = 1000, p = 100)

w ∗ ∼ lognormal(σ = 2)p

0 10 20
Passes on data

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

DP-CD
DP-SGD
DP-GCD

12

Wrap up

▶ Private Greedy CD provably works!

▶ It can “bypass” ambient dimension

▶ In fact, GCD adapts to problems geometry

13

Thank you!

For more details, preprint online:

https://arxiv.org/abs/2207.01560

14

https://arxiv.org/abs/2207.01560

