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— how to use all this data?




Centralizing in a data center is difficult
Centralizing data is often impossible

» Privacy:

— data may be sensitive (e.g. health records, geolocation)

» Volume of data:

— data may be large (e.g. cameras of self-driving car)

» Time:

— it may be needed to take decisions quickly (e.g. reinforcement learning)



Why share in the first place?

If it is so difficult to share data... why do it?

» |ocal datasets are often too small

— no statistical significance (e.g. medical study)

» |ocal datasets can be biased

— if a self-driving car learns in countryside, can it drive in the city?
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Classical vs Federated Learning

A single optimization problem
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Classical vs Federated Learning

Multiple sub-problems
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Best Scenario: Homogeneous Data

N local sub-problems
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Best Scenario: Homogeneous Data

N local sub-problems _ _
P Estimate global solution
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Best Scenario: Homogeneous Data

Y local solutions 6, 3
Sk average of 6;
global solution 6. ]




Failure: Heterogeneous Data
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Failure: Heterogeneous Data
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We need a different method...
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Federated Optimization

0, € arg min Z f(0) , where f°(6) = Eye yerpe [f(e;xcyyc)}
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!Brendan McMahan et al. “Communication-efficient learning of deep networks from 10
decentralized data". In: AISTATS. PMLR. 2017, pp. 1273-1282.
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rated Optimization

. where f(0) = Exc yepe [Z(Q;Xcayc)}

Federated Averaging (or local (S)GD)?
» Foreach t=0...:

> Set 05, = 0,

» For each agent ¢, do H gradient updates:

9§,h+1 = 96 - anC(Gf’h)

» Aggregate models: 6, 1 = NZN 05 1

IBrendan McMahan et al.

“Communication-efficient learning of deep networks from

decentralized data". In: AISTATS. PMLR. 2017, pp. 1273-1282.
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Communication and Sample Complexity
Local Training vs. Precision
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Communication rounds

(Figure from Ahmed Khaled, Konstantin Mishchenko, and Peter Richtarik. “Tighter Theory forll
Local SGD on Identical and Heterogeneous Data”. In: AISTATS. 2020, pp. 4519-4529)



Beyond Federated Optimization:
Federated TD and LSA
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Some problems do not fit this framework...
Example: TD Learning with linear approximation (1)

In Federated TD learning, N agent use a shared policy 7 in N
different environments:

So =S, A~ W("Slf)v and 5/5+1 ~ Pl\CADP('|5/faAi)
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Some problems do not fit this framework...
Example: TD Learning with linear approximation (1)

In Federated TD learning, N agent use a shared policy 7 in N
different environments:

So =S, A~ W("Slf)v and 5/5+1 ~ PI\CADP('|5/fa i)

Goal: estimate its value in each environment, for s € S,

Ver(s) =B [Xoo v re(S5, AQ)
where r¢ is a reward obtained by agent ¢
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Some problems do not fit this framework...

Example: TD Learning with linear approximation (1)

Idea: build a shared estimate of all values
VT (s) ~ 0" ¢(s)
using & € R and embedding ¢ : S — R?
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Some problems do not fit this framework...

Example: TD Learning with linear approximation (1)

Idea: build a shared estimate of all values
VT (s) ~ 0" ¢(s)
using & € R and embedding ¢ : S — R?

Is this meaningful to use a shared estimate? Yes, because:

» If agents are homogeneous, it reduces sample complexity
» If agents are heterogeneous, it may reduce bias of local data

14



Linear Stochastic Approximation

Special case: only one agent
TD (with linear approx.) can be seen as solving a linear system
Ab, = b

where A and b are known through stochastic estimates A(Z), b(Z)
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Linear Stochastic Approximation

Special case: only one agent
TD (with linear approx.) can be seen as solving a linear system
Ab, = b

where A and b are known through stochastic estimates A(Z), b(Z)

Note: It is inefficient to cast it as a minimization problem
— This requires a different method, with a different analysis
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Algorithm for LSA

Initialize 6, € RY
fort=0to T —1do
Observe Z; and update:

Or = 01 — U(A(Zt)et—l - b(Zt))
end for

16



Context, idea on nice analysis (1)?

Initialize 69 € R?
fort =0to T —1do

Observe Z; , and update: 0¢ = 01 — n(A(Z¢)0:—1 — b(Zt))
end for

2Sergey Samsonov et al. “Improved High-Probability Bounds for the Temporal Difference
Learning Algorithm via Exponential Stability”. In: COLT. PMLR. 2024, pp. 4511-4547. 17
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Stochastic Expansion
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Context, idea on nice analysis (1)?

Initialize 69 € R?
fort =0to T —1do
Observe Z; , and update: 0¢ = 01 — n(A(Z¢)0:—1 — b(Zt))

end for

Stochastic Expansion
We may write: 0; — 0, = (Id — nA(Z;))(0:-1 — 0) — ne(Z:)

Assumptions

» Oracle: i.i.d sequence Z;'s such that E[A(Z;)] = A, and E[b(Z;)] = b
> Exponential stability: E[|| [Ti_,(Id — nA(Z.))||?] < (1 — na)*~* for some a > 0
> Noise £(Z) = (A(Z) — A)0, + (b(Z) — b) has finite variance o2

2Sergey Samsonov et al. “Improved High-Probability Bounds for the Temporal Difference
Learning Algorithm via Exponential Stability”. In: COLT. PMLR. 2024, pp. 4511-4547. 17



Context, idea on nice analysis (I1)3

Stochastic Expansion
.

O0r — 0, =T1.7(0 — 0,) +1 Z Meire(Z)
t=1

Where ;. “accumulates the updates” from t to t':
Moo = (1d = nA(Ze))(1d = nA(Zo-1)) -+ (1d = 7A(Z:))

3Sergey Samsonov et al. “Improved High-Probability Bounds for the Temporal Difference
Learning Algorithm via Exponential Stability”. In: COLT. PMLR. 2024, pp. 4511-4547.
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Context, idea on nice analysis (I11)*

Stochastic Expansion
.

07 — 0. =T17(00 — 0.) + 1 Z Me17e(Z)
t=1
Using E[||T.rul|?] < (1 —na)t 1| u||? to bound each term:

2
{167 — 0.1°) < (1~ na)T 6o — 6.7 + 17

4Sergey Samsonov et al. “Improved High-Probability Bounds for the Temporal Difference
Learning Algorithm via Exponential Stability”. In: COLT. PMLR. 2024, pp. 4511-4547.
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Federated LSA

Take A€, b¢ such that A0S = b® for c = 1..N
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Federated LSA

Take A€, b¢ such that A0S = b® for c = 1..N

Goal: solve collaboratively

Assumptions

» 6, and 6¢ are unique, and A€ and b€ are split among N agents

» Oracle: i.i.d sequence Zf's such that E[A(Zf)] = AC, and E[b(Zf)] = b°
> Exponential stability: E[|| [i_,(I1d — nA(Z5))|]?] < (1 —na)** for a >0
» Noise £(Z) = (A°(Z) — A°)0S + (b°(Z) — b

|
b) has variance bounded by o2

20



Solving Federated LSA

21



FedLSA Algorithm

fort=0to T —1do
Initialize ;o = 0;
for each agent c = 1..N do
for h=1to H do
Observe Z;, and perform local update:
O = 9?,h-1 - U(AC(ZtC,h)ef,h—1 - bC(ZtC,h))
end for
end for
Aggregate local updates 0,1 = %Zi\/:]- 0% 1
end for
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Analysis of FedLSA

Stochastic Expansion (over one communication round)

Zrtlml 9>+nZ(Id—rt1H(9:—e*)

N H
ertm—l ne(Zy)

c=1 h=1

_|_

==

Where I'¢,.,, “accumulates local updates”, round t, from h to H,

rg,h:h’ = (Id — nA<( tc,h/))(ld nA“(Z; th— 1))+ (Id - TIAC(ZtC,h)) 23



Analysis of FedLSA

We can characterize the bias of FedLSA:
N
ias 1 r — c c
pbias — N ;(Id —Te1n)7H(Id = (Id — nA9)) {6 — 6,}

—_ 1 N
where [y 1.p = 5D oy T
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Analysis of FedLSA

We can characterize the bias of FedLSA:
N
ias 1 r — c c
pbias — N ;(Id —Te1n)7H(Id = (Id — nA9)) {6 — 6,}

—_ 1 N
where [y 1.p = 5D oy T

And give a convergence rate

2

ias 10
B[l - 02~ 0.7) = 0 (1~ na)*160 — 6.+
24



Numerical lllustration

Left: H=100 Right: H=1000
101 101—1
101-\ 1071
10734 1073
0 10 20 30 40 50 0 10 20 30 40 50
Communications (x100) Communications (x10)

Blue line: FedLSA's mean squared error
Green line: FedLSA's bias as predicted by our theory
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Problem: heterogeneity requires lots of

communications

To achieve E[HHT Al } , we need
> 77/\73 < 62 — = Na*e
2
> [67] < e = H =y

||90 0.

> (1—na)™)6— 0.2 < — T =2l o0

26



Solution: Control variates (SCAFFLSA)?

fort=0to 7T —1do
Initialize 0:o = 0;
for each agent c = 1..N do
for h=1to H do
Observe Z;, and perform local update:
Orh = 9?,/;—1 - U(AC(thh)eﬁhq - bC(Ztc,h) — &)
end for
end for

Aggregate local updates 0,1 = %Zi\lzl 05 1
Update control variate &1 = & — %H(@m — 05 )

end for

SExtending ideas from on Sai Praneeth Karimireddy et al. “Scaffold: Stochastic controlled 27
averaging for federated learning”. In: /CML. PMLR. 2020, pp. 5132-5143




Theoretical analysis

. a
We prove, assuming H < -——= AT

2

o 21 < __ naH T o
Ello7 — 6.7 5 (1 - 12) T + 1%

with oo = || — 0.1 + n° H*Ec[|| A°(05 — 6.)||°]
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Theoretical analysis

; __a
We prove, assuming H < -——= AT

2

E[[|0r — 0,]12] < (1 — 2H) Ty + 1%
(107 — 6.1 (1~ 22) Ty + 17

with oo = || — 0.1 + n° H*Ec[|| A°(05 — 6.)||°]

Note on analysis
Direct analysis “a la LSA” does not work. We need a “Lyapunov”’ analysis,
and to carefully study covariances of control variates to obtain linear speed-up.

28



Numerical lllustration
Left: H=100 Right: H=1000
1014 10*1
101\ o 10711

10_3’ 1073,

0 10 20 30 40 50 0 10 20 30 40 50
Communications (x100) Communications (x10)

Blue line: FedLSA's mean squared error
Orange line: SCAFFLSA's mean squared error 29



Communication Complexity

To achieve E[H@T Al } , we need
1< 2 — =g
> H - H — UE

Ne? max || Ac||?
2

> (1—na)™)6o— 0,2 < - T ="2lA jog [t

— nmaxc HACII2

— H o< 1/Ne? rather than 1/Ne, and T independent on ¢

30



Parameter setting required to reach E [||67 — 6,]|?] < €* for
different algorithms/analyses

Communication T Local updates H Sample complexity TH

Algorithm
) 1 O (Froel)

Fedlsa® 0 (45

g FedlSA  O(5:logy) O(x) Oz log ¢)
23 Safen’  O(Liog}) o) O(31og )
= Scafflsa O(i2 %) O(N%z) 0(@Iog%)

5Thinh T Doan. “Local stochastic approximation: A unified view of federated learning and
distributed multi-task reinforcement learning algorithms”. In: arXiv:2006.13460 (2020).
"Adapted from Konstantin Mishchenko et al. “Proxskip: Yes! local gradient steps provably

In: ICML. 2022, pp. 15750-15769 31

"

lead to communication acceleration! finally!



Conclusion and Perspectives

Summary:

» We studied FedLSA's communication complexity
» We extended control variates methods to FedLSA
» We show that both methods have linear speed-up (up to bias)

Perspectives:

» SCAFFLSA's analysis is good in low step-size regimes: what
about larger step sizes?

» Direct analysis of SCAFFLSA “a la FedLSA"? 3



Thank you!

Questions?

See the paper:

Paul Mangold et al. “SCAFFLSA: Taming Heterogeneity in Federated Linear
Stochastic Approximation and TD Learning”. In: arXiv:2402.04114 (2024)
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