Taming Heterogeneity in Federated Linear Stochastic Approximation

Paul Mangold CMAP, École Polytechnique, France

Joint work with S. Samsonov, S. Labbi, I. Levin, R. Alami, A. Naumov, E. Moulines

September 5, 2024

Background on Federated Learning

Data center

Data center

VS.

Data center

VS.

Data collection by users

|--|

Data collection by users

Data center

VS.

)		([[])
---	--	-------

ightarrow how to use all this data?

Centralizing in a data center is difficult

Centralizing data is often impossible

► Privacy: → data may be sensitive (e.g. health records, geolocation)

Volume of data:

 \rightarrow data may be large (e.g. cameras of self-driving car)

Time:

 \rightarrow it may be needed to take decisions quickly (e.g. reinforcement learning)

Why share in the first place?

If it is so difficult to share data... why do it?

► local datasets are often too small → no statistical significance (e.g. medical study)

local datasets can be biased

 \rightarrow if a self-driving car learns in countryside, can it drive in the city?

Classical vs Federated Learning

A single optimization problem

$$\min_{\theta \in \mathbb{R}^d} \mathbb{E}_{x, y \sim D} \Big[\ell(\theta; x, y) \Big]$$

Classical vs Federated Learning

Multiple sub-problems

$$\min_{\theta \in \mathbb{R}^d} \sum_{c=1}^{N} \mathbb{E}_{x^c, y^c \sim D^c} \Big[\ell(\theta; x^c, y^c) \Big]$$

 \rightarrow but only one shared solution

Best Scenario: Homogeneous Data

N local sub-problems

$$\begin{split} \min_{\theta \in \mathbb{R}^{d}} \mathbb{E}_{x^{1}, y^{1} \sim D^{1}} \Big[\ell(\theta; x^{1}, y^{1}) \Big] &\to \theta_{\star}^{1} \\ \min_{\theta \in \mathbb{R}^{d}} \mathbb{E}_{x^{2}, y^{2} \sim D^{2}} \Big[\ell(\theta; x^{2}, y^{2}) \Big] \to \theta_{\star}^{2} \\ &\vdots \\ \\ \min_{\theta \in \mathbb{R}^{d}} \mathbb{E}_{x^{N}, y^{N} \sim D^{N}} \Big[\ell(\theta; x^{N}, y^{N}) \Big] \to \theta_{\star}^{N} \end{split}$$

Best Scenario: Homogeneous Data

N local sub-problems

1

$$\begin{split} \min_{\theta \in \mathbb{R}^{d}} \mathbb{E}_{x^{1}, y^{1} \sim D^{1}} \Big[\ell(\theta; x^{1}, y^{1}) \Big] &\to \theta_{\star}^{1} \\ \min_{\theta \in \mathbb{R}^{d}} \mathbb{E}_{x^{2}, y^{2} \sim D^{2}} \Big[\ell(\theta; x^{2}, y^{2}) \Big] \to \theta_{\star}^{2} \\ &\vdots \\ \\ \min_{\theta \in \mathbb{R}^{d}} \mathbb{E}_{x^{N}, y^{N} \sim D^{N}} \Big[\ell(\theta; x^{N}, y^{N}) \Big] \to \theta_{\star}^{N} \end{split}$$

Estimate global solution

$$heta_{\star} = rac{1}{N}\sum_{c=1}^{N} heta_{\star}^{c}$$

OK if
$$\mathcal{D}_1 = \mathcal{D}_2 = \cdots = \mathcal{D}_N$$

Best Scenario: Homogeneous Data

Failure: Heterogeneous Data

$$\begin{array}{l} \mbox{Federated Optimization} \\ \theta_{\star} \in \arg\min_{\theta \in \mathbb{R}^{d}} \sum_{c=1}^{N} f^{c}(\theta) \ , \quad \mbox{where } f^{c}(\theta) = \mathbb{E}_{x^{c},y^{c} \sim D^{c}} \Big[\ell(\theta;x^{c},y^{c}) \Big] \end{array}$$

¹Brendan McMahan et al. "Communication-efficient learning of deep networks from decentralized data". In: *AISTATS*. PMLR. 2017, pp. 1273–1282.

$$\begin{array}{l} \mbox{Federated Optimization} \\ \theta_{\star} \in \arg\min_{\theta \in \mathbb{R}^{d}} \sum_{c=1}^{N} f^{c}(\theta) \ , \quad \mbox{where } f^{c}(\theta) = \mathbb{E}_{x^{c},y^{c} \sim D^{c}} \Big[\ell(\theta;x^{c},y^{c}) \Big] \end{array}$$

Federated Averaging (or local $(S)GD)^1$

¹Brendan McMahan et al. "Communication-efficient learning of deep networks from decentralized data". In: *AISTATS*. PMLR. 2017, pp. 1273–1282.

10

Communication and Sample Complexity Local Training vs. Precision

(Figure from Ahmed Khaled, Konstantin Mishchenko, and Peter Richtarik. "Tighter Theory for Local SGD on Identical and Heterogeneous Data". In: *AISTATS*. 2020, pp. 4519–4529) 11

Beyond Federated Optimization: Federated TD and LSA

Some problems do not fit this framework... Example: TD Learning with linear approximation (I)

In Federated TD learning, N agent use a shared policy π in N different environments:

$$S_0^c = s, A_k^c \sim \pi(\cdot|S_k^c), \text{ and } S_{k+1}^c \sim P_{\mathsf{MDP}}^c(\cdot|S_k^c, A_k^c)$$

Some problems do not fit this framework... Example: TD Learning with linear approximation (I)

In Federated TD learning, N agent use a shared policy π in N different environments:

$$S_0^c = s, A_k^c \sim \pi(\cdot|S_k^c), ext{ and } S_{k+1}^c \sim P_{\mathsf{MDP}}^c(\cdot|S_k^c,A_k^c)$$

Goal: estimate its value in each environment, for $s \in \mathcal{S}$,

$$V^{c,\pi}(s) = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r^c(S_k^c, A_k^c)\right]$$

where r^c is a reward obtained by agent c

Some problems do not fit this framework... Example: TD Learning with linear approximation (II)

Idea: build a shared estimate of all values

 $V^{c,\pi}(s) pprox heta^ op arphi(s)$

using $\theta \in \mathbb{R}^d$ and embedding $\varphi: \mathcal{S} \rightarrow \mathbb{R}^d$

Some problems do not fit this framework... Example: TD Learning with linear approximation (II)

Idea: build a shared estimate of all values

 $V^{c,\pi}(s) pprox heta^ op arphi(s)$

using $\theta \in \mathbb{R}^d$ and embedding $\varphi : \mathcal{S} \to \mathbb{R}^d$

Is this meaningful to use a shared estimate? Yes, because:

If agents are homogeneous, it reduces sample complexity
If agents are heterogeneous, it may reduce bias of local data

Linear Stochastic Approximation Special case: only one agent

TD (with linear approx.) can be seen as solving a linear system

$$A heta_{\star} = b$$

where A and b are known through stochastic estimates A(Z), b(Z)

Linear Stochastic Approximation Special case: only one agent

TD (with linear approx.) can be seen as solving a linear system

 $A\theta_{\star} = b$

where A and b are known through stochastic estimates A(Z), b(Z)

Note: It is inefficient to cast it as a minimization problem \rightarrow This requires a different method, with a different analysis

Algorithm for LSA

Initialize
$$\theta_0 \in \mathbb{R}^d$$

for $t = 0$ to $T - 1$ do
Observe Z_t and update:
 $\theta_t = \theta_{t-1} - \eta(A(Z_t)\theta_{t-1} - b(Z_t))$
end for

Context, idea on nice analysis $(I)^2$

Initialize $\theta_0 \in \mathbb{R}^d$ for t = 0 to T - 1 do

Observe $Z_{t,h}^c$ and update: $\theta_t = \theta_{t-1} - \eta(A(Z_t)\theta_{t-1} - b(Z_t))$ end for

²Sergey Samsonov et al. "Improved High-Probability Bounds for the Temporal Difference Learning Algorithm via Exponential Stability". In: *COLT*. PMLR. 2024, pp. 4511–4547.

Context, idea on nice analysis (I)² Initialize $\theta_0 \in \mathbb{R}^d$ for t = 0 to T - 1 do Observe $Z_{t,h}^c$ and update: $\theta_t = \theta_{t-1} - \eta(A(Z_t)\theta_{t-1} - b(Z_t))$ end for

Stochastic Expansion

We may write: $\theta_t - \theta_{\star} = (\mathsf{Id} - \eta A(Z_t))(\theta_{t-1} - \theta_{\star}) - \eta \varepsilon(Z_t)$

²Sergey Samsonov et al. "Improved High-Probability Bounds for the Temporal Difference Learning Algorithm via Exponential Stability". In: *COLT*. PMLR. 2024, pp. 4511–4547.

Context, idea on nice analysis (I)²
Initialize
$$\theta_0 \in \mathbb{R}^d$$

for $t = 0$ to $T - 1$ do
Observe $Z_{t,h}^c$ and update: $\theta_t = \theta_{t-1} - \eta(A(Z_t)\theta_{t-1} - b(Z_t))$
end for

Stochastic Expansion

We may write:
$$heta_t - heta_\star = (\mathsf{Id} - \eta A(Z_t))(heta_{t-1} - heta_\star) - \eta arepsilon(Z_t)$$

Assumptions

Oracle: i.i.d sequence Z_t's such that E[A(Z_t)] = A, and E[b(Z_t)] = b
 Exponential stability: E[|| Π^k_{t=ℓ}(Id − ηA(Z_t))||²] ≤ (1 − ηa)^{k−ℓ} for some a > 0
 Noise ε(Z) = (A(Z) − A)θ_{*} + (b(Z) − b) has finite variance σ²_{*}

²Sergey Samsonov et al. "Improved High-Probability Bounds for the Temporal Difference Learning Algorithm via Exponential Stability". In: *COLT*. PMLR. 2024, pp. 4511–4547.

Context, idea on nice analysis $(II)^3$

Stochastic Expansion

$$\theta_{T} - \theta_{\star} = \Gamma_{1:T}(\theta_{0} - \theta_{\star}) + \eta \sum_{t=1}^{T} \Gamma_{t+1:T} \varepsilon(Z_{t})$$

Where $\Gamma_{t:t'}$ "accumulates the updates" from t to t':

$$\mathsf{\Gamma}_{t:t'} = (\mathsf{Id} - \eta \mathsf{A}(\mathsf{Z}_{t'}))(\mathsf{Id} - \eta \mathsf{A}(\mathsf{Z}_{t'-1})) \cdots (\mathsf{Id} - \eta \mathsf{A}(\mathsf{Z}_{t}))$$

³Sergey Samsonov et al. "Improved High-Probability Bounds for the Temporal Difference Learning Algorithm via Exponential Stability". In: *COLT*. PMLR. 2024, pp. 4511–4547.

Context, idea on nice analysis $(III)^4$

Stochastic Expansion

$$\theta_T - \theta_\star = \Gamma_{1:T}(\theta_0 - \theta_\star) + \eta \sum_{t=1}^T \Gamma_{t+1:T} \varepsilon(Z_t)$$

Using $\mathbb{E}[\|\Gamma_{t:t'}u\|^2] \leq (1-\eta a)^{t'-t+1}\|u\|^2$ to bound each term: $\mathbb{E}[\|\theta_T - \theta_\star\|^2] \leq (1-\eta a)^T \|\theta_0 - \theta_\star\|^2 + \frac{\eta \sigma_\star^2}{a}$

⁴Sergey Samsonov et al. "Improved High-Probability Bounds for the Temporal Difference Learning Algorithm via Exponential Stability". In: *COLT*. PMLR. 2024, pp. 4511–4547.

Federated LSA

Take A^c, b^c such that $A^c \theta^c_{\star} = b^c$ for c = 1..N

Federated LSA

Take A^c, b^c such that $A^c \theta^c_{\star} = b^c$ for c = 1..N

Goal: solve collaboratively

$$igg(rac{1}{N}\sum_{c=1}^{N}A^{c}igg) heta_{\star}=rac{1}{N}\sum_{c=1}^{N}b^{c}$$

Assumptions

θ_{*} and θ^c_{*} are unique, and A^c and b^c are split among N agents
 Oracle: i.i.d sequence Z^c_t's such that E[A(Z^c_t)] = A^c, and E[b(Z^c_t)] = b^c
 Exponential stability: E[|| Π^k_{t=ℓ}(Id − ηA^c(Z^c_t))||²] ≤ (1 − ηa)^{k-ℓ} for a > 0
 Noise ε^c(Z) = (A^c(Z) − A^c)θ^c_{*} + (b^c(Z) − b^c) has variance bounded by σ²_{*} 20

Solving Federated LSA

FedLSA Algorithm

for
$$t = 0$$
 to $T - 1$ do
Initialize $\theta_{t,0} = \theta_t$
for each agent $c = 1..N$ do
for $h = 1$ to H do
Observe $Z_{t,h}^c$ and perform local update:
 $\theta_{t,h} = \theta_{t,h-1}^c - \eta (A^c (Z_{t,h}^c) \theta_{t,h-1}^c - b^c (Z_{t,h}^c)))$
end for
end for
Aggregate local updates $\theta_{t+1} = \frac{1}{N} \sum_{c=1}^{N} \theta_{t,H}^c$
end for

Analysis of FedLSA

Stochastic Expansion (over one communication round)

$$\theta_t - \theta_\star = \frac{1}{N} \sum_{c=1}^N \Gamma_{t,1:H}^c(\theta_{t-1} - \theta_\star) + \eta \sum_{c=1}^N (\mathsf{Id} - \Gamma_{t,1:H}^c)(\theta_\star^c - \theta_\star) \\ + \frac{\eta}{N} \sum_{c=1}^N \sum_{h=1}^H \Gamma_{t,h+1:H}^c \varepsilon^c(Z_t^c)$$

Where $\Gamma_{t,h:h'}^c$ "accumulates local updates", round t, from h to h', $\Gamma_{t,h:h'}^c = (\operatorname{Id} - \eta A^c(Z_{t,h'}^c))(\operatorname{Id} - \eta A^c(Z_{t,h'-1}^c))\cdots(\operatorname{Id} - \eta A^c(Z_{t,h}^c))$ 23

Analysis of FedLSA

We can characterize the bias of FedLSA:

$$\theta_t^{\text{bias}} = \frac{1}{N} \sum_{c=1}^N (\mathsf{Id} - \bar{\mathsf{\Gamma}}_{t,1:H})^{-1} (\mathsf{Id} - (\mathsf{Id} - \eta A^c)^H) \{\theta_\star^c - \theta_\star\}$$

where $\bar{\Gamma}_{t,1:H} = \frac{1}{N} \sum_{c=1}^{N} \Gamma_{t,1:H}^{c}$

Analysis of FedLSA

We can characterize the bias of FedLSA:

$$\theta_t^{\text{bias}} = \frac{1}{N} \sum_{c=1}^N (\mathsf{Id} - \bar{\mathsf{\Gamma}}_{t,1:H})^{-1} (\mathsf{Id} - (\mathsf{Id} - \eta A^c)^H) \{\theta_\star^c - \theta_\star\}$$

where $\bar{\Gamma}_{t,1:H} = \frac{1}{N} \sum_{c=1}^{N} \Gamma_{t,1:H}^{c}$

And give a convergence rate

$$\mathbb{E}\Big[\|\theta_t - \theta_t^{bias} - \theta_\star\|^2\Big] = O\left((1 - \eta a)^{Ht}\|\theta_0 - \theta_\star\|^2 + \frac{\eta \sigma_\star^2}{Na}\right)$$

Numerical Illustration

Blue line: FedLSA's mean squared error Green line: FedLSA's bias as predicted by our theory

Problem: heterogeneity requires lots of communications

To achieve
$$\mathbb{E}\Big[\| heta_{\mathcal{T}}- heta_{\star}\|^2\Big]\leq\epsilon^2$$
, we need

$$\begin{array}{l} \frac{\eta \sigma_{\star}^{2}}{Na} \leq \epsilon^{2} & \rightarrow \eta = \frac{Na\epsilon^{2}}{\sigma_{\star}^{2}} \\ \bullet & \|\theta_{T}^{\text{bias}}\|^{2} \leq \epsilon^{2} & \rightarrow H = \frac{\sigma_{\star}^{2}}{N\epsilon \mathbb{E}_{c}[\|\theta_{\star} - \theta_{\star}^{c}\|]} \\ \bullet & (1 - \eta a)^{Ht} \|\theta_{0} - \theta_{\star}\|^{2} \leq \epsilon^{2} & \rightarrow T = \frac{\mathbb{E}_{c}[\|\theta_{\star} - \theta_{\star}^{c}\|]}{a^{2}\epsilon} \log \frac{\|\theta_{0} - \theta_{\star}\|}{\epsilon} \end{array}$$

Solution: Control variates (SCAFFLSA)⁵ for t = 0 to T - 1 do Initialize $\theta_{t,0} = \theta_t$ for each agent c = 1..N do for h = 1 to H do Observe Z_{th}^c and perform local update: $\theta_{t,h} = \theta_{t,h-1}^{c} - \eta (A^{c}(Z_{t,h}^{c})\theta_{t,h-1}^{c} - b^{c}(Z_{t,h}^{c}) - \xi_{t})$ end for end for Aggregate local updates $\theta_{t+1} = \frac{1}{N} \sum_{c=1}^{N} \theta_{t,H}^{c}$ Update control variate $\xi_{t+1} = \xi_t - \frac{1}{nH}(\theta_{t+1} - \theta_{t,H}^c)$ end for

⁵Extending ideas from on Sai Praneeth Karimireddy et al. "Scaffold: Stochastic controlled 27 averaging for federated learning". In: *ICML*. PMLR. 2020, pp. 5132–5143

Theoretical analysis

We prove, assuming $H \leq \frac{a}{\eta \max_{c} \|A^{c}\|^{2}}$

$$\mathbb{E}[\|\theta_{T} - \theta_{\star}\|^{2}] \lesssim \left(1 - \frac{\eta_{\mathsf{a}\mathsf{H}}}{2}\right)^{\mathsf{T}}\psi_{\mathsf{0}} + \frac{\eta\sigma_{\star}^{2}}{\mathsf{N}\mathsf{a}}$$

with $\psi_0 = \|\theta_0 - \theta_\star\|^2 + \eta^2 H^2 \mathbb{E}_c[\|A^c(\theta^c_\star - \theta_\star)\|^2]$

Theoretical analysis

We prove, assuming $H \leq \frac{a}{\eta \max_c \|A^c\|^2}$

$$\mathbb{E}[\|\theta_{T} - \theta_{\star}\|^{2}] \lesssim \left(1 - \frac{\eta_{aH}}{2}\right)^{T} \psi_{0} + \frac{\eta \sigma_{\star}^{2}}{Na}$$

with
$$\psi_0 = \| heta_0 - heta_\star\|^2 + \eta^2 H^2 \mathbb{E}_c[\|A^c(heta^c_\star - heta_\star)\|^2]$$

Note on analysis

Direct analysis "à la LSA" does not work. We need a "Lyapunov" analysis, and to carefully study covariances of control variates to obtain linear speed-up.

Numerical Illustration

Blue line: FedLSA's mean squared error Orange line: SCAFFLSA's mean squared error

Communication Complexity

To achieve
$$\mathbb{E}\left[\|\theta_T - \theta_\star\|^2\right] \le \epsilon^2$$
, we need
 $\stackrel{\eta\sigma_\star^2}{Na} \le \epsilon^2 \qquad \rightarrow \eta = \frac{Na\epsilon^2}{\sigma_\star^2}$
 $\stackrel{H}{\leftarrow} H \le \frac{a}{\eta \max_c \|A^c\|^2} \qquad \rightarrow H = \frac{\sigma_\star^2}{N\epsilon^2 \max_c \|A^c\|^2}$

 $\blacktriangleright (1 - \eta a)^{Ht} \|\theta_0 - \theta_\star\|^2 \le \epsilon^2 \longrightarrow T = \frac{\max_c \|A^c\|^2}{a^2} \log \frac{\|\theta_0 - \theta_\star\|}{\epsilon}$

 $ightarrow H \propto 1/N\epsilon^2$ rather than $1/N\epsilon$, and T independent on ϵ

Parameter setting required to reach $\mathbb{E}\left[\|\theta_{T} - \theta_{\star}\|^{2}\right] \leq \epsilon^{2}$ for different algorithms/analyses

		Algorithm	Communication T	Local updates <i>H</i>	Sample complexity TH
		FedLSA ⁶	$\mathcal{O}\left(rac{\textit{N}^2}{\textit{a}^2\epsilon^2}\lograc{1}{\epsilon} ight)$	1	$\mathcal{O}\left(rac{\textit{N}^2}{a^2\epsilon^2}\lograc{1}{\epsilon} ight)$
ием	results	FedLSA Scaffnew ⁷ Scafflsa	$ \begin{array}{l} \mathcal{O}\left(\frac{1}{a^{2}\epsilon}\log\frac{1}{\epsilon}\right) \\ \mathcal{O}\left(\frac{1}{a\epsilon}\log\frac{1}{\epsilon}\right) \\ \mathcal{O}\left(\frac{1}{a^{2}}\log\frac{1}{\epsilon}\right) \end{array} \end{array} $	$egin{array}{l} \mathcal{O}ig(rac{1}{N\epsilon}ig) \ \mathcal{O}ig(rac{1}{a\epsilon}ig) \ \mathcal{O}ig(rac{1}{n\epsilon^2}ig) \end{array}$	$\begin{array}{l} \mathcal{O}\big(\frac{1}{Na^2\epsilon^2}\log\frac{1}{\epsilon}\big)\\ \mathcal{O}\big(\frac{1}{a^2\epsilon^2}\log\frac{1}{\epsilon}\big)\\ \mathcal{O}\big(\frac{1}{Na^2\epsilon^2}\log\frac{1}{\epsilon}\big) \end{array}$

⁶Thinh T Doan. "Local stochastic approximation: A unified view of federated learning and distributed multi-task reinforcement learning algorithms". In: *arXiv:2006.13460* (2020).

⁷Adapted from Konstantin Mishchenko et al. "Proxskip: Yes! local gradient steps provably lead to communication acceleration! finally!" In: *ICML*. 2022, pp. 15750–15769

Conclusion and Perspectives

Summary:

- ▶ We studied FedLSA's communication complexity
- We extended control variates methods to FedLSA
- We show that both methods have linear speed-up (up to bias)

Perspectives:

- SCAFFLSA's analysis is good in low step-size regimes: what about larger step sizes?
- Direct analysis of SCAFFLSA "à la FedLSA"?

Thank you!

Questions?

See the paper:

Paul Mangold et al. "SCAFFLSA: Taming Heterogeneity in Federated Linear Stochastic Approximation and TD Learning". In: *arXiv:2402.04114* (2024)