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Background on Federated
Learning
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Data Collection

Data center

vs.

Data collection by users

→ how to use all this data?
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Centralizing in a data center is difficult

Centralizing data is often impossible

▶ Privacy:
→ data may be sensitive (e.g. health records, geolocation)

▶ Volume of data:
→ data may be large (e.g. cameras of self-driving car)

▶ Time:
→ it may be needed to take decisions quickly (e.g. reinforcement learning)
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Why share in the first place?

If it is so difficult to share data... why do it?

▶ local datasets are often too small
→ no statistical significance (e.g. medical study)

▶ local datasets can be biased
→ if a self-driving car learns in countryside, can it drive in the city?
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Classical vs Federated Learning

A single optimization problem

min
θ∈Rd

Ex ,y∼D

[
ℓ(θ; x , y)

]
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Classical vs Federated Learning

Multiple sub-problems

min
θ∈Rd

N∑
c=1

Exc ,y c∼Dc

[
ℓ(θ; xc , y c)

]
→ but only one shared solution
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Best Scenario: Homogeneous Data

N local sub-problems

min
θ∈Rd

Ex1,y1∼D1

[
ℓ(θ; x1, y 1)

]
→ θ1⋆

min
θ∈Rd

Ex2,y2∼D2

[
ℓ(θ; x2, y 2)

]
→ θ2⋆

...

min
θ∈Rd

ExN ,yN∼DN

[
ℓ(θ; xN , yN)

]
→ θN⋆

Estimate global solution

θ⋆ =
1

N

N∑
c=1

θc⋆

OK if D1 = D2 = · · · = DN
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Failure: Heterogeneous Data
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We need a different method...
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Federated Optimization
θ⋆ ∈ arg min

θ∈Rd

N∑
c=1

f c(θ) , where f c(θ) = Exc ,y c∼Dc

[
ℓ(θ; xc , y c)

]

Federated Averaging (or local (S)GD)1

▶ For each t = 0... :
▶ Set θct,0 = θt
▶ For each agent c , do H gradient updates:

θct,h+1 = θct,h − η∇f c(θct,h)

▶ Aggregate models: θt+1 =
1
N

∑N
c=1 θ

c
t,H

1Brendan McMahan et al. “Communication-efficient learning of deep networks from
decentralized data”. In: AISTATS. PMLR. 2017, pp. 1273–1282. 10
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Communication and Sample Complexity
Local Training vs. Precision

(Figure from Ahmed Khaled, Konstantin Mishchenko, and Peter Richtarik. “Tighter Theory for
Local SGD on Identical and Heterogeneous Data”. In: AISTATS. 2020, pp. 4519–4529) 11



Beyond Federated Optimization:

Federated TD and LSA

12



Some problems do not fit this framework...
Example: TD Learning with linear approximation (I)

In Federated TD learning, N agent use a shared policy π in N
different environments:

S c
0 = s,Ac

k ∼ π(·|S c
k ), and S c

k+1 ∼ Pc
MDP(·|S c

k ,A
c
k)

Goal: estimate its value in each environment, for s ∈ S,
V c ,π(s) = E

[∑∞
k=0 γ

kr c(S c
k ,A

c
k)
]

where r c is a reward obtained by agent c
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Some problems do not fit this framework...
Example: TD Learning with linear approximation (II)

Idea: build a shared estimate of all values

V c ,π(s) ≈ θ⊤φ(s)

using θ ∈ Rd and embedding φ : S → Rd

Is this meaningful to use a shared estimate? Yes, because:

▶ If agents are homogeneous, it reduces sample complexity
▶ If agents are heterogeneous, it may reduce bias of local data
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Linear Stochastic Approximation
Special case: only one agent

TD (with linear approx.) can be seen as solving a linear system

Aθ⋆ = b

where A and b are known through stochastic estimates A(Z ), b(Z )

Note: It is inefficient to cast it as a minimization problem
→ This requires a different method, with a different analysis
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Algorithm for LSA

Initialize θ0 ∈ Rd

for t = 0 to T − 1 do
Observe Zt and update:

θt = θt−1 − η(A(Zt)θt−1 − b(Zt))

end for

16



Context, idea on nice analysis (I)2
Initialize θ0 ∈ Rd

for t = 0 to T − 1 do
Observe Z c

t,h and update: θt = θt−1 − η(A(Zt )θt−1 − b(Zt ))

end for

Stochastic Expansion

We may write: θt − θ⋆ = (Id− ηA(Zt))(θt−1 − θ⋆)− ηε(Zt)

Assumptions

▶ Oracle: i.i.d sequence Zt ’s such that E[A(Zt)] = A, and E[b(Zt)] = b
▶ Exponential stability: E[∥∏k

t=ℓ(Id− ηA(Zt))∥2] ≤ (1− ηa)k−ℓ for some a > 0
▶ Noise ε(Z ) = (A(Z )− A)θ⋆ + (b(Z )− b) has finite variance σ2

⋆

2Sergey Samsonov et al. “Improved High-Probability Bounds for the Temporal Difference
Learning Algorithm via Exponential Stability”. In: COLT. PMLR. 2024, pp. 4511–4547. 17
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Context, idea on nice analysis (II)3

Stochastic Expansion

θT − θ⋆ = Γ1:T (θ0 − θ⋆) + η
T∑
t=1

Γt+1:Tε(Zt)

Where Γt:t ′ “accumulates the updates” from t to t ′:

Γt:t ′ = (Id− ηA(Zt ′))(Id− ηA(Zt ′−1)) · · · (Id− ηA(Zt))

3Sergey Samsonov et al. “Improved High-Probability Bounds for the Temporal Difference
Learning Algorithm via Exponential Stability”. In: COLT. PMLR. 2024, pp. 4511–4547.
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Context, idea on nice analysis (III)4

Stochastic Expansion

θT − θ⋆ = Γ1:T (θ0 − θ⋆) + η
T∑
t=1

Γt+1:Tε(Zt)

Using E[∥Γt:t ′u∥2] ≤ (1− ηa)t
′−t+1∥u∥2 to bound each term:

E[∥θT − θ⋆∥2] ≤ (1− ηa)T∥θ0 − θ⋆∥2 +
ησ2⋆
a

4Sergey Samsonov et al. “Improved High-Probability Bounds for the Temporal Difference
Learning Algorithm via Exponential Stability”. In: COLT. PMLR. 2024, pp. 4511–4547. 19



Federated LSA

Take Ac , bc such that Acθc⋆ = bc for c = 1..N

Goal: solve collaboratively(
1

N

N∑
c=1

Ac

)
θ⋆ =

1

N

N∑
c=1

bc

Assumptions

▶ θ⋆ and θc⋆ are unique, and Ac and bc are split among N agents
▶ Oracle: i.i.d sequence Z c

t ’s such that E[A(Z c
t )] = Ac , and E[b(Z c

t )] = bc

▶ Exponential stability: E[∥∏k
t=ℓ(Id− ηAc(Z c

t ))∥2] ≤ (1− ηa)k−ℓ for a > 0
▶ Noise εc(Z ) = (Ac(Z )− Ac)θc⋆ + (bc(Z )− bc) has variance bounded by σ2

⋆
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Solving Federated LSA
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FedLSA Algorithm
for t = 0 to T − 1 do

Initialize θt,0 = θt
for each agent c = 1..N do

for h = 1 to H do
Observe Z c

t,h and perform local update:

θt,h = θct,h−1 − η(Ac(Z c
t,h)θ

c
t,h−1 − bc(Z c

t,h))

end for
end for
Aggregate local updates θt+1 =

1
N

∑N
c=1 θ

c
t,H

end for

22



Analysis of FedLSA

Stochastic Expansion (over one communication round)

θt − θ⋆ =
1

N

N∑
c=1

Γct,1:H(θt−1 − θ⋆) + η
N∑

c=1

(Id− Γct,1:H)(θ
c
⋆ − θ⋆)

+
η

N

N∑
c=1

H∑
h=1

Γct,h+1:Hε
c(Z c

t )

Where Γct,h:h′ “accumulates local updates”, round t, from h to h′,

Γct,h:h′ = (Id− ηAc(Z c
t,h′))(Id− ηAc(Z c

t,h′−1)) · · · (Id− ηAc(Z c
t,h)) 23



Analysis of FedLSA

We can characterize the bias of FedLSA:

θbiast =
1

N

N∑
c=1

(Id− Γ̄t,1:H)
−1(Id− (Id− ηAc)H){θc⋆ − θ⋆}

where Γ̄t,1:H = 1
N

∑N
c=1 Γ

c
t,1:H

And give a convergence rate

E
[
∥θt − θbiast − θ⋆∥2

]
= O

(
(1− ηa)Ht∥θ0 − θ⋆∥2 +

ησ2⋆
Na

)

24
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Numerical Illustration
Left: H=100 Right: H=1000

Blue line: FedLSA’s mean squared error
Green line: FedLSA’s bias as predicted by our theory 25



Problem: heterogeneity requires lots of
communications

To achieve E
[
∥θT − θ⋆∥2

]
≤ ϵ2, we need

▶ ησ2
⋆

Na ≤ ϵ2 → η = Naϵ2

σ2
⋆

▶ ∥θbiasT ∥2 ≤ ϵ2 → H = σ2
⋆

NϵEc [∥θ⋆−θc⋆∥]

▶ (1− ηa)Ht∥θ0 − θ⋆∥2 ≤ ϵ2 → T = Ec [∥θ⋆−θc⋆∥]
a2ϵ log ∥θ0−θ⋆∥

ϵ

26



Solution: Control variates (SCAFFLSA)5
for t = 0 to T − 1 do

Initialize θt,0 = θt
for each agent c = 1..N do

for h = 1 to H do
Observe Z c

t,h and perform local update:

θt,h = θct,h−1 − η(Ac(Z c
t,h)θ

c
t,h−1 − bc(Z c

t,h)− ξt)
end for

end for
Aggregate local updates θt+1 =

1
N

∑N
c=1 θ

c
t,H

Update control variate ξt+1 = ξt − 1
ηH (θt+1 − θct,H)

end for
5Extending ideas from on Sai Praneeth Karimireddy et al. “Scaffold: Stochastic controlled

averaging for federated learning”. In: ICML. PMLR. 2020, pp. 5132–5143
27



Theoretical analysis

We prove, assuming H ≤ a
ηmaxc ∥Ac∥2

E[∥θT − θ⋆∥2] ≲
(
1− ηaH

2

)T
ψ0 +

ησ2⋆
Na

with ψ0 = ∥θ0 − θ⋆∥2 + η2H2Ec [∥Ac(θc⋆ − θ⋆)∥2]

Note on analysis
Direct analysis “à la LSA” does not work. We need a “Lyapunov” analysis,

and to carefully study covariances of control variates to obtain linear speed-up.

28



Theoretical analysis

We prove, assuming H ≤ a
ηmaxc ∥Ac∥2

E[∥θT − θ⋆∥2] ≲
(
1− ηaH

2

)T
ψ0 +

ησ2⋆
Na

with ψ0 = ∥θ0 − θ⋆∥2 + η2H2Ec [∥Ac(θc⋆ − θ⋆)∥2]

Note on analysis
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Numerical Illustration
Left: H=100 Right: H=1000
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Blue line: FedLSA’s mean squared error
Orange line: SCAFFLSA’s mean squared error 29



Communication Complexity

To achieve E
[
∥θT − θ⋆∥2

]
≤ ϵ2, we need

▶ ησ2
⋆

Na ≤ ϵ2 → η = Naϵ2

σ2
⋆

▶ H ≤ a
ηmaxc ∥Ac∥2 → H = σ2

⋆

Nϵ2 maxc ∥Ac∥2

▶ (1− ηa)Ht∥θ0 − θ⋆∥2 ≤ ϵ2 → T = maxc ∥Ac∥2
a2 log ∥θ0−θ⋆∥

ϵ

→ H ∝ 1/Nϵ2 rather than 1/Nϵ, and T independent on ϵ
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Parameter setting required to reach E
[
∥θT − θ⋆∥2

]
≤ ϵ2 for

different algorithms/analyses

Algorithm Communication T Local updates H Sample complexity TH

FedLSA6 O
(

N2

a2ϵ2 log
1
ϵ

)
1 O

(
N2

a2ϵ2 log
1
ϵ

)
n
ew

re
su
lt
s FedLSA O

(
1
a2ϵ log

1
ϵ

)
O
(

1
Nϵ

)
O
(

1
Na2ϵ2 log

1
ϵ

)
Scaffnew 7 O

(
1
aϵ log

1
ϵ

)
O
(

1
aϵ

)
O
(

1
a2ϵ2 log

1
ϵ

)
Scafflsa O

(
1
a2 log

1
ϵ

)
O
(

1
Nϵ2

)
O
(

1
Na2ϵ2 log

1
ϵ

)
6Thinh T Doan. “Local stochastic approximation: A unified view of federated learning and

distributed multi-task reinforcement learning algorithms”. In: arXiv:2006.13460 (2020).
7Adapted from Konstantin Mishchenko et al. “Proxskip: Yes! local gradient steps provably

lead to communication acceleration! finally!” In: ICML. 2022, pp. 15750–15769
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Conclusion and Perspectives

Summary:

▶ We studied FedLSA’s communication complexity
▶ We extended control variates methods to FedLSA
▶ We show that both methods have linear speed-up (up to bias)

Perspectives:

▶ SCAFFLSA’s analysis is good in low step-size regimes: what
about larger step sizes?

▶ Direct analysis of SCAFFLSA “à la FedLSA”?
32



Thank you!
Questions?

See the paper:

Paul Mangold et al. “SCAFFLSA: Taming Heterogeneity in Federated Linear
Stochastic Approximation and TD Learning”. In: arXiv:2402.04114 (2024)
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