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Abstract

Ensuring convergence of policy gradient methods in federated reinforcement
learning (FRL) under environment heterogeneity remains a major challenge. In
this work, we first establish that heterogeneity, perhaps counter-intuitively, can
necessitate optimal policies to be non-deterministic or even time-varying, even
in tabular environments. Subsequently, we prove global convergence results for
federated policy gradient (FedPG) algorithms employing local updates, under a
Łojasiewicz condition that holds only for each individual agent, in both entropy-
regularized and non-regularized scenarios. Crucially, our theoretical analysis
shows that FedPG attains linear speed-up with respect to the number of agents,
a property central to efficient federated learning. Leveraging insights from our
theoretical findings, we introduce b-RS-FedPG, a novel policy gradient method
that employs a carefully constructed softmax-inspired parameterization coupled
with an appropriate regularization scheme. We further demonstrate explicit con-
vergence rates for b-RS-FedPG toward near-optimal stationary policies. Finally,
we demonstrate that empirically both FedPG and b-RS-FedPG consistently out-
perform federated Q-learning on heterogeneous settings.

1 Introduction

In Federated Reinforcement Learning (FRL), multiple agents collaboratively optimize a shared pol-
icy without directly exchanging their local actions or rewards (Qi et al., 2021; Zhuo et al., 2023).
Instead, policy information is aggregated via a central server (Khodadadian et al., 2022). FRL im-
proves traditional distributed methods by enhancing privacy and minimizing communication over-
head. Despite these advantages, FRL implementations face key challenges, notably heterogeneity
of the environment (Jin et al., 2022) and limited communication bandwidth (Zhu et al., 2022; Fan
et al., 2023). Most existing studies focus on homogeneous settings, where all agents interact with
identical Markov Decision Processes (MDPs). The heterogeneous scenario, where agents evolve in
different MDPs, is still largely under-explored.

This paper specifically addresses federated policy gradient methods in heterogeneous settings. Pre-
viously, Wang et al. (2024a) established convergence only to first-order stationary points of average-
value functions. Such guarantees are substantially weaker than those for single-agent policy gradi-
ent methods, which achieve global convergence under mild conditions (Mei et al., 2020). Our main
contribution is to bridge this gap. We first analyze structural properties specific to FRL under hetero-
geneity. A key result is that optimal common policies, even in the tabular setting, can inherently be
non-deterministic or even non-stationary, in stark contrast to classical reinforcement learning (RL).
This finding underscores the novel challenges posed by environmental heterogeneity in FRL.

Motivated by this insight, we develop novel algorithmic strategies tailored for learning non-
deterministic stationary policies in tabular environments. We analyze federated policy gradient
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Table 1: Comparison with prior work in the setting of agents with heterogeneous dynamics. Our
results are the first to prove global convergence of FedPG to a near-optimal policy.

Algorithm Local Steps Global convergence Last iterate Linear- Speedup

PAvg (Jin et al. 2022) ✓ ✗ ✗ ✗

FEDSVRPG-M (Wang et al. 2024a) ✓ ✗ ✗ ✓

FEDHAPG-M (Wang et al. 2024a) ✓ ✗ ✗ ✓

FedPG (our work) ✓ ✓ ✓ ✓

methods (FedPG) with softmax parameterization, demonstrating convergence to a neighborhood
of the optimal policy even with heterogeneous agents. Crucially, our analysis quantifies how this
neighborhood size depends on environmental heterogeneity. Additionally, we highlight substantial
benefits from incorporating regularization techniques, particularly when combined with a novel and
carefully designed parameterization of the policy.

Our theoretical results rely on local assumptions about agent-specific value functions, which do not
extend to the global FRL objective. We establish convergence guarantees for FedPG under a non-
uniform Łojasiewicz inequality, which generalizes gradient dominance in non-convex objectives.
This analysis extends beyond FRL, offering novel convergence insights into Federated Averaging
(FedAVG) (McMahan et al., 2017) under non-uniform Łojasiewicz conditions. Our key contributions
can be summarized as follows:

• We show that, due to heterogeneity, the classical properties of RL do not hold anymore in FRL.
Specifically, optimal policies may be stochastic or time-varying even in simple tabular settings.

• We establish the first global convergence theory for entropy-regularized policy gradients in het-
erogeneous FRL, proving that FedPG converges to near-optimal policies under local non-uniform
Łojasiewicz conditions, and achieves linear speed-up in the number of agents.

• Based on our results, we introduce a novel softmax-inspired parameterization with tailored regu-
larization, for which we derive a convergence rate with explicit constants.

• We conduct experiments on two FRL environments, confirming our theoretical predictions for
FedPG’s, and demonstrating its robust performance across varying levels of heterogeneity.

We summarize the main differences between our analysis and previous work in Table 1. We discuss
related work in Section 2, and describe the particular properties of FRL in Section 3. We then present
our main theoretical results in Section 4, and confirm them numerically in Section 5.

2 Related Work

Policy Gradient Methods. Policy gradient methods (Williams, 1992; Sutton et al., 1999) have
been extensively studied in the single-agent discounted RL setting. In deterministic scenarios, global
convergence results leverage the quasi-convexity of the value function of the state-action discounted
occupancy measure to avoid convergence to suboptimal traps, utilizing a Łojasiewicz condition and
ensuring a positive probability for optimal actions (Mei et al., 2020; Zhang et al., 2020; Xiao, 2022).
Mei et al. (2020) (following Agarwal et al. 2020) analyze entropy-regularized policy gradient meth-
ods, establishing linear convergence rates and detailing how entropy regularization enhances opti-
mization properties. Early analyses for stochastic policy gradient methods demonstrate convergence
only to first-order stationary points (Zhang et al., 2021b,a; Yuan et al., 2022). Mei et al. (2021)
explicitly examine the discrepancy between deterministic and stochastic policy gradient updates,
identifying conditions necessary for global convergence under stochastic updates. Mei et al. (2024)
addresses the special case of bandit settings, proving that policy-gradient algorithms converge glob-
ally almost surely for any constant step size.
Federated Reinforcement Learning. FRL has attracted much attention recently, with significant
theoretical developments in both value-based and policy-based tabular methods; see Zhuo et al.
(2023) and the references therein. In homogeneous environments, several studies have proposed fed-
erated Q-learning variants that achieve near-optimal sample and communication complexity (Salgia
and Chi, 2024; Zheng et al., 2025). For heterogeneous environments – where agents face differ-
ent MDPs – recent analyzes highlight inherent convergence trade-offs; federated algorithms achieve
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linear speedup but suffer from unavoidable suboptimality proportional to the degree of heterogene-
ity (Wang et al., 2024b; Zhang et al., 2024; Labbi et al., 2025). Policy gradient (PG) algorithms
in federated environments have been mainly explored under homogeneous assumptions, especially
via natural policy gradient approaches, which provide strong global convergence guarantees and
improved communication efficiency (Lan et al., 2023; Ganesh et al., 2024). In federated multitask
settings—where agents share identical dynamics but differ in reward functions—several works have
established either convergence to stationary points (Zhu et al., 2024; Chen et al., 2021) or global
convergence guarantees (Yang et al., 2024). These studies highlight that reward heterogeneity alone
does not introduce significant theoretical challenges, as the resulting problem retains the fundamen-
tal characteristics of standard RL settings; see Appendix B.1. In contrast, environments with het-
erogeneous dynamics present additional complexities since optimal policies may become dependent
on the initial state distribution (Jin et al., 2022). Consequently, existing federated policy gradient
methods in this scenario face intrinsic difficulties arising from non-convex optimization landscapes,
restricting their convergence guarantees to stationary points (Jin et al., 2022; Wang et al., 2024a).
Federated Averaging. Federated learning (FL) has generated an extensive body of research, a
comprehensive review of which is beyond the scope of this paragraph; see Kairouz et al. (2021);
Wang et al. (2021). We specifically focus on FL in non-convex optimization settings involving finite
sums of functions under the Polyak–Łojasiewicz (PL) condition. Existing literature predominantly
assumes the PL condition on the global (average) objective; by contrast, our approach requires
PL-like conditions only at the level of local client objectives. Deterministic local gradient descent
(full-batch local updates) under PL conditions has been studied by Haddadpour and Mahdavi (2019),
who demonstrated optimal convergence rates provided gradient diversity across clients is suitably
bounded. Additionally, Haddadpour et al. (2019) analyzed stochastic local updates, establishing
that local SGD achieves linear convergence speed-ups proportional to the number of participating
devices. These results have been extended Demidovich et al. (2025) under (L0, L1)-smoothness:
their results still require PL conditions both for the individual and the average functions.

3 Heterogeneous Federated Reinforcement Learning

Problem setting. In FRL, each of the M agents independently interacts with its own infinite-
horizon discounted MDP, defined as Mc := (S,A, γ,Pc, r, ρ). Each agent-specific MDP shares
the finite state space S, finite action space A, discount factor γ, a common deterministic reward
function r, and a distribution ρ over initial states. The differences among these MDPs lie solely
in their transition kernels Pc. Consequently, an FRL instance is fully characterized by the set of
agent-specific transition dynamics.

For an agent c ∈ [M ], we denote its local history until iteration t as Ht
c := (s0c , a

0
c , s

1
c , a

1
c , . . . , s

t
c),

with Ht
loc := (S × A)t the set of possible local histories. Similarly, we denote Ht :=

(Ht
1, . . . ,Ht

M ) ∈ Ht
M the global history. A global decision rule πt : Ht

M × [M ] → P(A), where
P(A) is the set of probability measures on A, assigns to each global history and agent a distribution
over actions. An agent-aware history-dependent policy is a sequence π = (πt)t∈N. The class of
all such policies is denoted by Π. A local decision rule πt

c : Ht
loc → P(A) maps local histories to

action distributions. A local history-dependent policy is ((πt
c)t∈N)c, with the set of all such policies

denoted Πℓ. A local stationary stochastic policy is π : S → P(A), mapping current states to distri-
butions over actions; this class is denoted by Πsta. A local deterministic policy maps states directly
to actions, π : S → A, forming class Πdet.

For a given policy class X ⊂ Π, we define the FRL objective over X as

maxπ∈X J(π) := 1
M

∑M
c=1 Jc(π) , Jc(π) := Eπ [

∑∞
t=0 γ

tr(St
c, A

t
c)] , (1)

where Eπ[·] is the expectation over random trajectories generated by following a policy π = (πt)t∈N:
the initial state is sampled from a distribution S0

c ∼ ρ(·) and ∀t ≥ 0 : At
c ∼ πt(·|Ht, c), St+1

c ∼
Pc(·|St

c, A
t
c), for Ht = (Ht

c)c∈[M ] where Ht
c = (S0

c , A
0
c , . . . , S

t
c) for all c ∈ [M ]. In (1), Jc(π) is

the expected discounted return of the agent c, and we notice that the local objectives Jc may vary
across agents since the corresponding MDPs Mc may differ.

By construction, Πdet ⊂ Πsta ⊂ Πℓ ⊂ Π: restricting to smaller policy classes can only reduce or
maintain the supremum of Jsm. In single-agent RL, the optimal policy can always be found within
the class of stationary deterministic policies; see e.g. (Agarwal et al., 2019, Theorem 1.7). This
result does not extend to FRL with heterogeneous agents.
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Algorithm 1 (S, RS, b-RS)-FedPG

Initialization: Learning rate η > 0, parameter θ0, projection set T
for r = 0 to R− 1 do

for c = 1 to M do
Set θr,0c = θr.
for h = 0 to H − 1 do

Collect B trajectories of length T : Zr,h+1
c := (Sr,h,1:T

c,b , Ar,h,1:T
c,b )Bb=1 using πθr,h

c

Update θr,h+1
c = θr,hc + ηg

Zr,h+1
c

c (θr,hc ) where g
Zr,h+1

c
c (θr,hc ) is computed using (6) for

S-FedPG, (9) for RS-FedPG, and (10) for b-RS-FedPG
Server updates parameter: θr+1 = projT (θ̄

r+1) where θ̄r+1 = 1
M

∑M
c=1 θ

r,H
c

Theorem 3.1. For each of the following properties, there exists an FRL instance with two infinite-
horizon discounted MDPs that satisfy

max
π∈Πdet

J(π) < max
π∈Πsta

J(π) , max
π∈Πsta

J(π) < max
π∈Πℓ

J(π) , max
π∈Πℓ

J(π) < max
π∈Π

J(π) .

The proof is postponed to Appendix B. We emphasize that these additional challenges arise specifi-
cally from heterogeneity in transition kernels. When transition kernels are homogeneous, even with
heterogeneous rewards, the federated setting simplifies to a standard RL problem with an averaged
reward structure; see Appendix B.1.

Note that the structural distinctions between FRL and standard RL inform algorithm selection. Al-
gorithms like Fed-Q-learning (Jin et al., 2022), which target deterministic policies, are suboptimal
in FRL (see Theorem 3.1). Conversely, history-dependent policies require substantial resources,
making them impractical. Hence, stationary policies emerge as an effective compromise between
computational feasibility and decision quality.

4 Solving Federated Reinforcement Learning with Policy Gradient Methods

In what follows, we consider the optimization of the objective J over the class of stationary poli-
cies, aiming thus to solve the following optimization problem: supπ∈Πsta

J(π). We use a softmax
parameterization, i.e. given a parameter θ ∈ Θ = R|S|×|A|, the corresponding policy is defined as

πθ(a|s) =
exp(θ(s, a))∑

a′∈A exp(θ(s, a′))
, θ = (θ(s, a), (s, a) ∈ S ×A) (2)

Although we write θ as a function for notational clarity, we equivalently view θ ∈ R|S|×|A| as
a real-valued matrix indexed by (s, a) ∈ {0, . . . |S| − 1} × {0, . . . |A| − 1}. That is, we iden-
tify the function θ : S × A → R with its corresponding matrix representation. This slight abuse
of notation allows us to use both functional and matrix-based views interchangeably, which sim-
plifies exposition in the context of softmax policy parameterization. Note that, because for each
s ∈ S , πθ(·|s) is a function to the probability simplex of dimension |A|, the Jacobian Jacπθ

(·|s) =
diag(πθ(·|s)) − πθ(·|s)π⊤

θ (·|s) satisfies Jacπθ
(·|s)1|A| = 0|A|, where 1|A| = [1, . . . , 1]⊤ and

0|A| = [0, . . . , 0]⊤. Alternative softmax-like parameterizations will also be considered as we dis-
cuss further in Section 4.4. Given a parameterized policy πθ, the distribution of a trajectory truncated
at T − 1 step for agent c ∈ [M ] is given, for z = (st, at)T−1

t=0 ∈ (S ×A)T , by

νc(θ; z) = ρ(s0)πθ(a
0|s0) ·∏T−1

t=1 Pc(s
t | st−1, at−1)πθ(a

t|st) . (3)

We introduce the following assumptions to underpin our subsequent analysis:
A-1. For any c, c′ ∈ [M ], it holds that max(s,a)∈S×A∥Pc(·|s, a)− Pc′(·|s, a)∥1 ≤ εP.

A-2. The initial state distribution ρ satisfies mins ρ(s) > 0.

A-1 captures agent heterogeneity by bounding the total variation between transition kernels, follow-
ing Zhang et al. (2024). A-2 ensures sufficient exploration and plays a key role in the analysis.
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4.1 General FedPG framework

We introduce and analyze three novel algorithms—S-FedPG, RS-FedPG, and b-RS-FedPG—as fed-
erated extensions of the policy gradient method; see Mei et al. (2020); Agarwal et al. (2021) and the
references therein. Each algorithm is a specific instance of the general FedPG framework, where
multiple agents cooperatively optimize the global objective F (θ), defined as an average of agent-
specific local objectives fc(θ). The key differences among the algorithms lie in the choice of local
objectives, gradient estimators, and policy parameterizations.

Each communication round involves the central server distributing global parameters θr to all agents.
Subsequently, each agent performs H stochastic gradient ascent steps on its local objective fc(θ):

θr,h+1
c = θr,hc + η · gZ

r,h+1
c

c (θr,hc ) , θr,0c = θr , (4)

where η > 0 is a learning rate, gZ
r,h+1
c

c (θr,hc ) is a REINFORCE-like estimator (Williams, 1992) of
∇fc(θ

r,h
c ) that uses a batch of independent B trajectories of length T : Zr,h+1

c = (Zr,h+1
c,b )Bb=1 ∼

[νc(θ
r,h
c )]⊗B(see (3) for a definition of νc(θ)). After H local steps, following the federated aver-

aging procedure, we average the final parameters θ̄r+1 = 1
M

∑M
c=1 θ

r,H
c followed (optionally) by

a projection step θr+1 = projT (θ̄
r+1) onto a specified target set T . The complete algorithm is

summarized in Algorithm 1.

Our convergence results are based on a novel fine-grained analysis of federated averaging, which is
of independent interest; see Appendix C. The proposed approach utilizes a second-order expansion
of the local objective function and extends the proof techniques originally introduced in Glasgow
et al. (2022) to achieve linear speed-up.
Lemma 4.1 (Ascent Lemma). Assume the following conditions:
1. Smoothness of the objective function and expected gradient estimator: For any c ∈ [M ], the

function fc is L1-Lipschitz, functions gc(θ) := EZc∼νc(θ)[g
Zc
c (θ)], ∇fc are L2-Lipschitz, and

⟨∇fc, v⟩ is L3-smooth for any ∥v∥2 = 1;
2. Bounded gradient heterogeneity: ∥∇F (θ)−∇fc(θ)∥2 ≤ ζ;
3. Bounded bias, variance, and fourth central moment of the gradient estimator: For any parameter

θ, ∥∇fc(θ)− gc(θ)∥2 ≤ β, and for p ∈ {2, 4} it holds EZc∼νc(θ)

[
∥gZc

c (θ)− gc(θ)∥p2
]
≤ σp

p .

Then, for any η > 0 such that ηHL2 ≤ 1/6 and 32η2H2L2
3L

2
1 ≤ L2

2, the iterates of FedPG (see (4))
satisfy

F (θr)− E
[
F (θ̄r+1)

∣∣Fr
]
≤ −ηH

4
∥∇F (θr)∥22 +

3η2L2Hσ2
2

2M

+ 2ηHβ2 + 8η3L2
2H

2(H − 1)ζ2 + 4 · 123η5L2
3H

2(H − 1)σ4
4 ,

where Fr is a global filtration induced by iterates of the algorithm.

For the proof and a more detailed discussion of this result, we refer the reader to Appendix C. It is
worth noting that the effects of agent heterogeneity and second-order biases disappear when H = 1.

4.2 Analysis of S-FedPG

We consider S-FedPG, the vanilla federated Softmax Policy Gradient method. This algorithm is
a specific instance of FedPG with a local objective defined as Jsm,c(θ) = Jc(πθ) and a global
Jsm(θ) = 1/M

∑M
c=1 Jsm,c(θ). Also define J⋆

sm,c = supθ∈Θ Jsm,c(θ) and J⋆
sm as an average of

J⋆
sm,c.

Importantly, Mei et al. (2020) shows that each local function Jsm,c is smooth with a Lipschitz gra-
dient, implying the global objective Jsm is also smooth. They further prove (Lemmas 8 and 15) that
each local function Jsm,c satisfies a non-uniform Łojasiewicz inequality:∥∥∇Jsm,c(θ)

∥∥2
2
≥ 2µsm,c(θ)[J

⋆
sm,c − Jsm,c(θ)]

2, (5)

where µsm,c(θ) is a strictly positive function, under A-2 - expression is provided in Lemma D.9;
see also as Mei et al. (2020). The non-uniform Łojasiewicz inequality (5) ensures that first-order
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stationary points and global maxima of Jsm,c coincide. However, note that the sum or average of
functions individually satisfying (5) does not necessarily satisfy (5), as the non-uniform Łojasiewicz
inequality is not stable under averaging. Consequently, existing analyses of federated averaging
methods leveraging classical Łojasiewicz conditions (e.g., Demidovich et al. (2025)) cannot be di-
rectly applied in our context.

Regarding the gradient estimator, we consider the vanilla REINFORCE to estimate the gradient of
the local function Jsm,c, and to do it, we need to sample truncated trajectories by following the
current policy πθ. The stochastic oracle for the gradient of the local objective function is

g
Zc
sm,c(θ) :=

1
B

∑B
b=1

∑T−1
t=0 γt

(∑t
ℓ=0 ∇ log πθ(A

ℓ
c,b | Sℓ

c,b)
)
r(St

c,b, A
t
c,b) . (6)

where Zc = (Zc,b)
B
b=0 and Zc,b = (St

c,b, A
t
c,b)

T−1
t=0 are independent truncated trajectories sampled

by following policy πθ (i.e., from νc(θ)). Importantly, note that our analysis readily generalizes to
more advanced gradient oracles, such as those employing variance-reduction techniques, importance
sampling, and other related methods. Under A-1 and 2, we can verify that the properties needed for
Lemma 4.1 holds (see Appendix D). Given this lemma and the non-uniform Łojasiewicz inequality
(5), we establish the following convergence rate for S-FedPG.
Theorem 4.2 (Convergence rates of S-FedPG). Assume A-1 and 2 and no projection (i.e., T =
R|S|×|A|). Additionally, assume that there exists µsm ∈ (0, 1) such that, with probability 1,
infr∈N µsm(θ

r) ≥ µsm. For any η > 0 such that ηH ≤ (1−γ)3/592, T ≥ 4(1−γ)−2, andM ·B ≥
(1− γ)−1, the iterates of S-FedPG satisfy

J⋆
sm − E[Jsm(θR)] ≲

J⋆
sm − Jsm(θ

0)

1 +R · (J⋆
sm − Jsm(θ0)) · ηHµsm

+
η1/2

µ
1/2
sm M1/2B1/2 · (1− γ)3.5

+
η2H1/2(H − 1)1/2

µ
1/2
sm (1− γ)8B

+
TγT

µ
1/2
sm (1− γ)

+
εP

µ
1/2
sm (1− γ)3

.

We notice that in these convergence guarantees, the heterogeneity bias does not disappear even if
H = 1. This behavior is unavoidable since it is not guaranteed that the global objective function Jsm
also satisfies (5) and thus it potentially may have several local minima and maxima. Based on this
result, we also obtain the following communication and sample complexity results for S-FedPG:
Corollary 4.3 (Sample and Communication Complexity of S-FedPG). Under the assumptions of
Theorem 4.2, let ϵ ≳ εPµ

−1/2
sm (1 − γ)−3. Then, for T such that T ≳ (1 − γ)−1 max((1 −

γ), log(ϵµ
1/2
sm (1 − γ))), a properly chosen step size and number of local updates, S-FedPG learns

an ϵ-approximation of the optimal objective with a number of communication rounds

R ≳
[(J⋆

sm − Jsm(θ
0))− ϵ/5]

(J⋆
sm − Jsm(θ0))µsmϵ(1− γ)3

,

for a total number of sampled trajectories per agent of

RHB ≳ max
( B

µsm(1− γ)3
,

1

µ2
smM(1− γ)7ϵ2

,
1

µ
3/2
sm ϵ(1− γ)5

) [(J⋆
sm − Jsm(θ

0))− ϵ/5]

(J⋆
sm − Jsm(θ0))ϵ

.

This result shows that S-FedPG have linear speedup until M ≈ min
(

1

µ
1/2
sm ϵ(1−γ)2

, 1
µ2
smB(1−γ)4ϵ2

)
.

4.3 Analysis of RS-FedPG

Next, following Agarwal et al. (2020); Mei et al. (2020), we analyze the softmax policy gradient
algorithm with entropy regularization. In particular, we are interested in the optimization of the
following local objectives:

Jr,c(θ) =: Jsm,c(θ) + λHρ
c (θ) , Hρ

c (θ) := −Eπθ
[
∑∞

t=0 γ
t log(πθ(A

t
c|St

c))] , (7)

where λ > 0 is an regularization coefficient, and the global objective Jr = 1/M
∑M

c=1 Jr,c.

The core idea of entropy regularization is to penalize deterministic policies and promote exploration
(Williams and Peng, 1991; Mnih et al., 2016; Schulman et al., 2017; Ahmed et al., 2019). As
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noted by (Mei et al., 2020, Theorem 6), the (deterministic) policy gradient algorithm applied to
the entropy-regularized objective (7) enjoys a linear convergence rate toward the softmax optimal
policy, in contrast to the polynomial convergence rates observed in non-regularized scenarios. This
accelerated convergence results from the fulfillment of a stronger, non-uniform Polyak–Łojasiewicz
condition

∥∇Jr,c(θ)∥22 ≥ 2µλ
r,c(θ)

[
J⋆
r,c − Jr,c(θ)

]
. (8)

The main difference to the previous version of the non-uniform Łojasiewicz inequality is that the
sub-optimality gap is linear. For small sub-optimality gaps this means that the gradient must be
larger. The constant µλ

r,c(θ) is given in Lemma E.10; see also (Mei et al., 2020, Lemma 15). As
above, we emphasize that the satisfaction of a non-uniform PL condition by each local function does
not necessarily imply that their average inherits this condition; see Lemma E.9 where we provide a
counter example.

To estimate the gradients of (7), we employ the REINFORCE objective using a log-policy aug-
mented reward gZc

r,c(θ), identical in form to (6), with the reward r replaced by the augmented reward

r̃λ(S
t
c,b, A

t
c,b; θ) := r(St

c,b, A
t
c,b)− λ log(πθ(A

t
c,b|St

c,b)) . (9)

Here again, we do not apply the projection. This choice of the gradient estimator results in the
algorithm RS-FedPG that achieves the following sample complexity result under an assumption of
µλ
r,c(θr) is bounded away from zero with probability 1:

Corollary 4.4 (Sample and Communication Complexity of RS-FedPG). Assume A-1 and 2 and no
projection (i.e., T = R|S|×|A|). Moreover, assume that there exists µλ

r ∈ (0, 1) such that such that
infr∈[N] µ

λ
r (θ

r) ≥ µλ
r > 0 with probability 1. Let ϵ ≳ (1 + λ log(|A|))2ε2P(µλ

r )
−1(1− γ)−6. Then,

for a properly chosen truncation horizon, step size, and number of local updates, RS-FedPG learns
an ϵ-approximation of the optimal objective J⋆

r with a number of communication rounds

R ≳
(1 + λ log(|A|)
(1− γ)3µλ

r

log
( (J⋆

r −Jr(θ
0))

ϵ

)
,

for a total number of samples per agent of

RHB ≳ max
( (1 + λ log(|A|))B

µλ
r (1− γ)3

,
(1 + λ log(|A|))3
(µλ

r )
2ϵM(1− γ)7

,
(1 + λ log(|A|))2

ϵ1/2(µλ
r )

3/2(1− γ)5

)
log
(J⋆

r −Jr(θ
0)

ϵ

)
.

This result follows from the combination of Lemma 4.1 and PL-inequality (8). This result proves that
RS-FedPG achieve a communication complexity that scales only logarithmically with the desired
accuracy while guaranteeing linear speedup until M ≈ min

(
1+λ log(|A|)

(µλ
r )

1/2ϵ1/2(1−γ)2
, (1+λ log(|A|))2

µλ
r ϵB(1−γ)4

)
.

4.4 Analysis of b-RS-FedPG

In Corollaries 4.3 and 4.4, we require the non-uniform Łojasiewicz constant to be bounded away
from zero almost surely—a restrictive assumption that is difficult to verify in practice.

In Appendix E.3, we show that when |A| = 2, the gradient field ∇Jr,c is radial outside a ball,
for all ∥θ∥ ≥ R, i.e.

〈
∇Jr,c(θ), θ

〉
< 0 so that ∇Jr,c always pushes θ toward the origin (see

Lemma E.16 for a precise statement). This radiality allows us to identify a bounded region onto
which projecting the global iterates of RS-FedPG increases the value of the local objective Jr (the
easy argument is given in Lemma E.19). By enforcing this projection at every round, we ensure
the policy parameters remain uniformly bounded away from the simplex boundary while improving
Jr. Unlike convex problems—where projection on appropriate sets preserves or improves convex
objectives—this behavior is highly non-trivial in the non-convex setting.

Exploiting Lemma E.10, we then derive an explicit lower bound on infr∈[R] µ
λ
r (θ

r). Notably, as
shown in Remark E.18, this radiality property fails for |A| ≥ 3, so analogous projection-based
guarantees cannot be extended to larger action spaces.

We now present b-RS-FedPG, a novel federated policy gradient method that uses bit-level param-
eterization in combination with regularization. The idea of our approach is to reduce the general
problem of policy optimization in MDP with |A| ≥ 3 to an equivalent problem in 2-action MDP. To
do it, we frame the action selection process as a sequence of binary decisions over action-encoding

7



bits, thus reducing the original FRL problem to a simpler two-action problem. This reformulation
allows to establish explicit lower bounds for the Łojasiewicz constant with the help of the projection.

Without loss of generality, let us consider an FRL instance (Mc)c∈[M ] with |A| = 2k1. Our goal
is to build a bit-level FRL instance (M̄c := (S̄, Ā, γ̄, P̄c, r̄ ))c∈[M ] with exactly two actions, such
that solving the original FRL task with (Mc)c∈[M ] for stationary policies is reduced to solving
this simpler instance. Let Σ := {0, 1} be the binary alphabet. Consider Σ∗ =

⋃∞
k=0 Σ

k, the
set of finite words (including the empty word). The length of w ∈ Σ∗ is |w|. Concatenation of
w,w′ ∈ Σ∗ is denoted w ◦ w′. For w = w1 ◦ w2 ◦ · · · ◦ w|w|, define its prefix of length k ≤ |w| as
w:k = w1 ◦ w2 ◦ · · · ◦ wk. Finally, let Σ<k denote all words shorter than k. Then, since |A| = 2k,
we can associate the action space of the FRL instance (Mc)c∈[M ] with a set Σk of binary words of
length exactly k, and define the corresponding action as aw for w ∈ Σk. Conversely, we define w(a)
as the word associated with action a. Now, consider an FRL instance with a state space S̄ defined
by S̄ := S × Σ<k, and with an action space Ā, given by the binary alphabet, i.e Ā := Σ.

For a given c ∈ [M ], the transition kernel of agent c in this bit-level FRL instance is defined as:

P̄c((s
′, w′)|(s, w), ā) :=

{
Pc(s

′|s, aw◦ā) · 1(w′ = ∅) if |w| = k − 1,

1((s′, w′) = (s, w ◦ ā)) otherwise .

In this bit-level FRL instance, the discount factor γ must be rescaled to reflect that the states in
which the original FRL instance is embedded are k times further apart. We define the rescaled
discount factor as γ̄ := γ1/k and the reward function as follows: r̄ ((s, w), ā) := γ̄−(k−1)r(si, aw◦ā)

if |w| = k−1 and 0 otherwise. For a given parameter θ ∈ R|S̄|×|Ā|, we define the following softmax
policy in the extended environment as

π̄θ(i|(s, w)) :=
exp(θ((s, w), i))

exp(θ((s, w), 1)) + exp(θ((s, w), 0))
, i ∈ Σ = {0, 1}

Drawing inspiration for auto-regressive sequence modeling, we can define the following correspond-
ing policy in the original FRL instance πθ(aw|s) :=

∏k
p=1 π̄θ(wp|(s, w:p)),

where θ = (θ(i, w), i ∈ Σ, w ∈ Σ<k). Compared to a usual softmax parameterization, this bit-
level softmax parameterization allows to execute a policy πθ using only k = log2(|A|) operations
instead of |A|, that is very useful in the case of large action spaces that typically appear in the case
of language modeling or recommendation systems. Define the bit-entropy regulariser as

Hρ
b,c(θ) := Eπθ

[ ∞∑
t=0

γthθ
b(S

t
c, A

t
c)

∣∣∣∣S0
c ∼ ρ

]
, hθ

b(s, a) := −
k−1∑
p=0

γ̄p log π̄θ(w(a)p|(s, w(a):p)) .

Finally, denote by Ṽ θ
b,c(s) = V πθ

c (s) + λHθ
b,c(s) and by V̄ θ

c the entropy-regularized value function
in this bit-level MDP associated to the c-the agent and to the policy π̄θ. Proposition F.1 (stated and
proved in the supplement) shows that V̄ θ

c coincide with Ṽ θ
b,c demonstrating the consistency of our

proposed formulation.

Building upon this FRL reduction method, we propose b-RS-FedPG, a special instance of FedPG,
in which the local objective function is Jb,c := Jsm,c + λHρ

b,c and global objective is defined as

Jb := 1/M
∑M

c=1 Jb,c. The key motivation for considering this specific local objective is that they
match the local functions of RS-FedPG when dealing with a two-action FRL instance, allowing to
provably establish the existence of a bounded set on which projecting increases the value of the
objective Jb.

We now design the stochastic estimator of the gradient so that it matches the bit-entropy regularized
stochastic estimator that would have been used in the bit-level MDP by RS-FedPG. For any param-
eter θ = R|S̄|×|Ā|, and given Zc ∼ [νc(θ)]

⊗B (defined at (3)), the biased estimator of the stochastic

1This property can be assumed without loss of generality by adding new artificial action identical to some
fixed a ∈ A.
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Figure 1: Comparison of S-FedPG (crosses), RS-FedPG (circles), b-RS-FedPG (triangles), and
Fed-Q-learning (squares): (a) Value of the global objective J(θr) in the Synthetic environ-
ment, for the three FedPG variants and different numbers of agents M ∈ {2, 10, 50}, shown on a
log-log scale; (b) Value of J(θr) in the Synthetic environment, comparing all four algorithms; (c)
Value of J(θr) in the GridWorld environment, comparing all four algorithms.

gradient is chosen to be:

gZc

b,c(θ) :=
1

B

B∑
b=1

k(T−1)∑
t=0

γ̄t

(
t∑

ℓ=0

∇ log π̄θ(w(A
pt

c,b)qt
|(Spt

c,b, w(A
pt

c,b):qt
))

)
Rt

c,b , (10)

where pt = ⌊t/k⌋, and qt = t− k⌊t/k⌋, and

Rt
c,b

∆
=
[
1{qt=k−1}r(S

pt

c,b, A
pt

c,b)− λ log π̄θ(w(A
pt

c,b)qt
|(Spt

c,b, w(A
pt

c,b):qt
))
]

.

Next, we establish the sample and communication complexity for b-RS-FedPG with explicit con-
stants. Importantly, b-RS-FedPG achieves the linear speedup until a certain threshold (similar to that
of RS-FedPG) with a logarithmic communication complexity with respect to the desired accuracy ϵ.
Corollary 4.5 (Sample and Communication Complexity of b-RS-FedPG). Assume A-1 and A-2.
Define γ̄ = γ1/ log2(|A|) and

µλ
b

∆
=

γ3λ(1− γ̄)

4log(|A|)|S| min
s

ρ(s)2exp

(
−4 log(|A|) · 1 + λ log(2)

λ(1− γ̄)

)
.

Set θ0 = (0, . . . , 0)⊤ and let ϵ ≳ (1 + λ)2ε2P(µ
λ
b)

−1(1 − γ̄)−6. Then, for a properly chosen
truncation horizon, a properly chosen projection set T , a properly chosen step size and number of
local updates, b-RS-FedPG learns an ϵ-approximation of the optimal objective J⋆

b with a number of
communication rounds

R ≳
(1 + λ)

(1− γ̄)2µλ
b

log
(5(J⋆

b−Jb(θ
0))

ϵ

)
,

for a total number of samples per agent of

RHB ≳ max
( (1 + λ log(2))B

µλ
b(1− γ̄)3

,
(1 + λ)3

(µλ
b)

2ϵM(1− γ̄)7
,

(1 + λ)2

ϵ1/2(µλ
b)

3/2(1− γ̄)5

)
log
(J⋆

b−Jb(θ
0)

ϵ

)
.

5 Experiments

We study the empirical performance of the three proposed methods on two environments, that satisfy
A-1 and A-2, and illustrate their advantage over Fed-Q-learning in heterogeneous settings. In the
two problems, the transition kernel for agent c can be decomposed as a mixture of two kernels: are
modeled as a mixture of two components: Pc = (1 − εP)P

com + εPP
ind
c where Pcom is a common

kernel, and Pind
c is an individual kernel specific to each agent. Details are given in Appendix H.

In Figure 1a, we illustrate the linear speedup by evaluating the three variants of FedPG in a het-
erogeneous environment. Specifically, we report the global objective J during the learning process
for various numbers of agents, using the theoretically motivated step size. Empirically, all three
algorithms achieve the speedup, thereby highlighting the benefits of collaboration even among het-
erogeneous agents. In Figures 1b and 1c, we compare the performance of Fed-Q-learning and the
three variants on two highly heterogeneous FRL problems. The three algorithms learn better poli-
cies, demonstrating, as suggested by Theorem 3.1, the advantage of learning a stochastic policy.
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6 Conclusion

This work extends the theoretical foundations of FRL in heterogeneous environments. It identifies
structural differences that challenge classical RL properties and shows that deterministic, stationary
strategies can be suboptimal. Our main contribution is the first global convergence guarantee for
both non-regularized and entropy-regularized policy gradient methods in heterogeneous FRL. We
also introduce a new algorithm, b-RS-FedPG, which combines a softmax-inspired parameterization
with tailored regularization, and for which we derive explicit convergence rates. Experiments on
two FRL benchmarks support our theoretical findings and demonstrate the effectiveness of FedPG
across varying levels of heterogeneity. A promising direction for future work is to establish exact
convergence to the optimal policy by developing new methods that correct for heterogeneity.
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A Notations

For clarity, we summarize here the notations that we use

Symbols Meaning Definition
S State space Section 3
A Action space Section 3
M Number of agents Section 3
Pc Transition kernel of agent c Section 3
r Reward function Section 3
γ Discount factor Section 3
ρ Initial distribution over the state space Section 3
J Global FRL objective Equation (1)
Jc Local objective of agent c Equation (1)
εP Heterogeneity on the transition kernels A-1

R Number of Communication rounds of FedPG Section 4.1
H Number of local steps of FedPG Section 4.1
T Length of the sampled trajectories Section 4.1
B Number of trajectories collected per iteration Section 4.1
T Projection set of FedPG Section 4.1
πθ Stationary policy parametrized by θ ∈ Θ Section 4.1
νc(θ) Distribution of sampled trajectory by agent c Equation (3)
F Global objective optimised by FedPG Section 4.1
fc Local function of agent c in FedPG Section 4.1

V π
c Value function of agent c under policy π Equation (38)

Qπ
c Q-function of agent c under policy π Equation (39)

dρ,π
c Occupancy measure of agent c under π Equation (40)

Aπ
c Advantage function of agent c under π Equation (41)

λ Regularization temperature Section 4.3
Ṽ π
c Regularized value function of agent c Equation (49)

Q̃π
c Regularized Q-function of agent c Equation (50)

Ãπ
c Regularized Advantage function of agent c Equation (51)

Jsm,c, Jr,c, and Jb,c Local functions in S-FedPG, RS-FedPG, and
b-RS-FedPG

Sections 4.2 to 4.4

Jsm, Jr, and Jb Respective global functions Sections 4.2 to 4.4
gZsm,c(θ), g

Z
r,c(θ),

and gZb,c(θ)

Stochastic estimators of the gradient at θ in
S-FedPG, RS-FedPG, and b-RS-FedPG

Equations (6), (9)
and (10)

L1,sm, L1,r, and L1,b Bound on the gradients of Jsm, Jr, and Jb Lemmas D.4 and E.4
and Appendix F.2

L2,sm, L2,r, and L2,b Smoothness constants of Jsm, Jr, and Jb Lemmas D.3 and E.3
and Appendix F.2

L3,sm, L3,r, and L3,b Bounds on the third-order derivative tensors
of Jsm, Jr, and Jb

Lemmas D.5 and E.5
and Appendix F.2

σp
sm,p, σ

p
r,p, and σp

b,p Bounds on the p-th central moments of
gZsm,c(θ), g

Z
r,c(θ), and gZb,c(θ) for p ∈ {2, 4}

Lemmas D.7 and E.7
and Appendix F.2

βsm, βr, and βb Bounds on bias of gZsm,c(θ), g
Z
r,c(θ), and

gZb,c(θ).
Lemmas D.7 and E.7
and Appendix F.2

ζsm, ζr, and ζb Bound on the gradient heterogeneity of the
objectives Jsm, Jr, and Jb

Lemmas D.6 and E.6
and Appendix F.2

µsm, µ
λ
r , and µλ

b Minimal Łojasiewicz coefficient over the
agents of of Jsm,c, Jr,c, and Jb,c

Lemmas D.10 and E.11
and Appendix F.2
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s0 s1

(a1, 1, 1000)

(a0, 1, 10)

(a0, 1, 0)

(a1, 1,−1)

k = 1

s0 s1

(a1, 1, 1000)

(a0, 1, 10)

(a0, 1, 0)

(a1, 1,−1)

k = 2

Figure 2: FRL task with no optimal local history-dependant policy. The triplet means (action,
probability, reward) and γ = 0.9. Note that these two environments share the same action space,
same state space, and same reward function.

The cardinality (the number of elements) of a set Y is denoted |Y |. We define the indicator function
of an element y ∈ Y as

1y(·) : Y −→ {0, 1}

w 7−→
{
1 if w = y ,

0, otherwise .

⟨·, ·⟩ denotes the Euclidean scalar product. For a three-times differentiable function f : Rd → R, we
denote ∇f ∈ Rd its gradient, ∇2f ∈ Rd×d its Hessian and ∇3f ∈ Rd×d×d its third-order derivative
tensor. and X⊗k the k-th tensor power of a tensor X . For two real-valued sequences (ar)∞r=0 and
(br)

∞
r=0, we write ar ≲ br if there exists a constant C > 0 such that ar ≤ Cbr for any r ≥ 0.

B On the different classes of policies

The goal of this section is to prove Theorem 3.1. For clarity and readability, we prove each statement
of the theorem in a separate lemma. First, we define the value function of an agent c ∈ [M ], of a
policy π ∈ Π, and for an initial distribution ρ as

V π
c (ρ)

∆
= Eπ

[ ∞∑
t=0

γtr(St
c, A

t
c)

]
, (11)

where Eπ[·] is the expectation over random trajectories generated by following a policy π = (πt)t∈N:
the initial state is sampled from a distribution S0

c ∼ ρ(·) and ∀t ≥ 0 : At
c ∼ πt(·|Ht, c), St+1

c ∼
Pc(·|St

c, A
t
c), for Ht = (Ht

c)c∈[M ] where Ht
c = (S0

c , A
0
c , . . . , S

t
c) for all c ∈ [M ].

Lemma B.1. There exists an FRL instance such that any local history-dependent policy is subopti-
mal with respect to some agent-aware history-dependent policy.

Proof. We consider the same FRL instance as in Theorem 1 of Jin et al. (2022) that is represented
in Figure 2 with ρ = (1/2, 1/2).

We show here that it holds

max
π∈Πℓ

1

2
(V π

1 (ρ) + V π
2 (ρ)) < max

π∈Π

1

2
(V π

1 (ρ) + V π
2 (ρ)) .

Let π⋆
ℓ be an optimal local history-dependant policy. Define π

(0,0)
ℓ , π(1,0)

ℓ , π(0,1)
ℓ and π

(1,1)
ℓ as

local history-dependant policies that maximises respectively V π
1 (s0) + V π

2 (s0), V π
1 (s1) + V π

2 (s0),
V π
1 (s0) + V π

2 (s1), and V π
1 (s1) + V π

2 (s1) on the set of local history-dependant policies Πℓ. Now,
define the following agent-aware history-dependant policy

π = 1(s0,s0)(s
0
1, s

0
2)π

(0,0)
ℓ + 1(s0,s1)(s

0
1, s

0
2)π

(0,1)
ℓ + 1(s1,s0)(s

0
1, s

0
2)π

(1,0)
ℓ + 1(s1,s1)(s

0
1, s

0
2)π

(1,1)
ℓ .
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s0 s1 s2

s3

(1, 0)

(1, 0)

(1, 0)

(a0, 1, 1)
(a1, 1, 2)

k = 1

s0 s1 s2

s3

(1, 0)

(1, 0) (1, 0)

(a0, 1, 1)

(a1, 1, 2)

k = 2

Figure 3: FRL task with no optimal stationary policy. The triplet means (action, probability, reward)
and γ = 0.9. If the action is not specified, it means that all the actions give the same reward and
lead to the same state

Denote by p = π⋆
ℓ (a0|s0) and q = π⋆

ℓ (a0|s1). We distinguish the two following cases:

Case q = 1: In this case we have

1

2

(
V

π⋆
ℓ

1 (s1) + V
π⋆
ℓ

2 (s1)
)
<

1

2

(
V

π
(1,1)
ℓ

1 (s1) + V
π
(1,1)
ℓ

2 (s1)

)
, (12)

as q = 1 means that the second agent will not select a1 at s1 at t = 0 and thus will not reach s0 at
t = 1 in the second environment which is suboptimal. Thus we have

1

2

(
V

π⋆
ℓ

1 (ρ) + V
π⋆
ℓ

2 (ρ)
)
=

1

4

[
V

π⋆
ℓ

1 (s0) + V
π⋆
ℓ

2 (s0) + V
π⋆
ℓ

1 (s1) + V
π⋆
ℓ

2 (s1)
]

<
1

4

[
V

π
(0,0)
l

1 (s0) + V
π
(0,0)
ℓ

2 (s0) + V
π
(1,1)
ℓ

1 (s1) + V
π
(1,1)
ℓ

2 (s1)

]
≤ 1

2
(V π

1 (ρ) + V π
2 (ρ)) ,

where the before last inequality is a consequence of (12) and the optimality of the policy π
(1,1)
ℓ on

the set Πℓ when the starting point is s1 for both agents.

Case q < 1: If (s01, s
0
2) = (s1, s0) then q < 1 is strictly suboptimal as the first agent selects with

a non-zero probability the action a1 that leads to a −1 reward while the action a0 leads to a better
reward. Thus we have

1

2

(
V

π⋆
ℓ

1 (ρ) + V
π⋆
ℓ

2 (ρ)
)
=

1

4

[
V

π⋆
ℓ

1 (s1) + V
π⋆
ℓ

2 (s0) + V
π⋆
ℓ

1 (s0) + V
π⋆
ℓ

2 (s1)
]

<
1

4

[
V

π
(1,0)
ℓ

1 (s0) + V
π
(1,0)
ℓ

2 (s0) + V
π
(0,1)
ℓ

1 (s1) + V
π
(0,1)
ℓ

2 (s1)

]
≤ 1

2
(V π

1 (ρ) + V π
2 (ρ)) ,

where the before last inequality is a consequence of the suboptimality of π⋆
ℓ as q < 1 and the

optimality of the policy π
(0,1)
ℓ on the set Πl when the starting point is s1 for both agents.

Lemma B.2. There exists an FRL instance such that any local stochastic stationary policy is sub-
optimal with respect to some local history-dependent policy.

Proof. We consider the FRL task described in Figure 3 with ρ = (1, 0, 0, 0). We show here that it
holds

max
π∈Πsta

1

2
(V π

1 (s0) + V π
2 (s0)) < max

π∈Πℓ

1

2
(V π

1 (s0) + V π
2 (s0)) .

17



s0 s1

s2

(1, 10) (1, 10)

(a0, 1, 0)

(a1, 1, 0)

k = 1

s0 s1

s2

(1, 10) (1, 10)

(a0, 1, 0)

(a1, 1, 0)

k = 2

Figure 4: FRL task with no optimal local deterministic policy. The triplet means (action, probability,
reward) and γ = 0.9. If the action is not specified, it means that all the actions give the same reward
and lead to the same state

Define the following local history-dependent policy πℓ = (πt
ℓ)t∈N that satisfies

π1
ℓ (a0|s3) = 1 · 1t=1 + 0 · 1t≥2 ,

which intuitively describes the policy that takes action a0 at the instant where the second agent
reaches the state s3 and then takes action a1 when the first agent reaches the state s3. The (double
of the) FRL objective of this policy is equal

V πℓ
1 (s0) + V πℓ

2 (s0) =
2γ2

1− γ
+ γ + 2γ2 .

Let π⋆
sta be a local stationary policy that maximizes V π

1 (s0) + V π
2 (s0) on the set of the local

stationary policies Πsta. We define p = π⋆
sta(a0|s3). The (double of the) federated objective for this

policy is

V
π⋆
sta

1 (s0) + V
π⋆
sta

2 (s0) =

∞∑
k=2

γk(1 · p+ 2 · (1− p)) + V
π⋆
sta

2 (s0) .

The first instant at which the second agent takes actions a1 follows a geometric distribution of
parameter 1− p. Thus, we have

V
π⋆
sta

2 (s0) = γ

∞∑
k=0

(
(1− p)kp ·

(
k−1∑
i=0

γi · 1 + 2γk

))

= γ

∞∑
k=0

(
(1− p)kp ·

(
1− γk

1− γ
+ 2γk

))

=
γ

1− γ

∞∑
k=0

(
(1− p)kp · (1− γk + 2γk − 2γk+1)

)
=

γ

1− γ

∞∑
k=0

(
(1− p)kp · (1 + γk − 2γk+1)

)
=

γp

1− γ

∞∑
k=0

(
(1− p)k + ((1− p)γ)k − 2γ((1− p)γ)k)

)
=

γp

1− γ

(
1

p
+

1

1− γ + pγ
− 2γ

1− γ + pγ

)
.
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By gathering the two precedent expressions, we get

V
π⋆
sta

1 (s0) + V
π⋆
sta

2 (s0) =
(2− p)γ2

1− γ
+

γp

1− γ

(
1

p
+

1

1− γ + pγ
− 2γ

1− γ + pγ

)
=

1

1− γ

[
(2− p)γ2 + γ + (1− 2γ)

γp

1− γ + pγ

]
=

1

1− γ

[
(2− p)γ2 + γ + (1− 2γ)− (1− 2γ)

1− γ

1− γ + pγ

]
≤ 1

1− γ

[
2γ2 + (1− γ)− (1− 2γ)

1− γ

1− γ + pγ

]
≤ 2γ2

1− γ
+ 2γ ,

where the last inequality holds as γ > 1/2. As for any γ > 1/2, we have 2γ < γ + 2γ2 then this
proves the suboptimality of the stationary policy π⋆

sta with respect to the local history-dependent
policy πℓ.

Lemma B.3. There exists an FRL instance such that any local deterministic policy is suboptimal
with respect to some local stationary stochastic policy.

Proof. We consider the FRL task of Figure 4, and we consider the setting where the two agents start
from the state s2, i.e, ρ = (0, 0, 1). We show here that it holds

max
π∈Πdet

1

2
(V π

1 (s2) + V π
2 (s2)) < max

π∈Πsta

1

2
(V π

1 (s2) + V π
2 (s2)) .

We define the stationary policy πsta that satisfies πsta(a0|s2) = 1/2 and πsta(a1|s2) = 1/2. First,
note that the probability of each agent being in state s2 at time t, while following πsta, is 1/2t. Thus,
the FRL objective of this policy is equal to

1

2
(V πsta

1 (s2) + V πsta
2 (s2)) =

10γ

1− γ
− 10γ

1− γ/2
=

6γ

1− γ
+

2γ2 − 6γ(1− γ)

(1− γ)(1− γ/2)
≥ 6γ

1− γ
,

where the last inequality follows from the fact that γ = 0.9. Let π⋆
det be an optimal deterministic

policy. We distinguish two cases

Case π⋆
det(s2) = a0: In this case, the second agent will reach state s0 at first iteration, but the first

agent will be stuck at s2 where he will get no reward. Thus, the FRL objective for this policy is
equal to

1

2

(
V

π⋆
det

1 (s2) + V
π⋆
det

2 (s2)
)
=

1

2

∞∑
t=1

10γt =
5γ

1− γ
,

proving that πsta achieves a higher value than π⋆
det.

Case π⋆
det(s1) = a1: This case is similar to the previous one.

Combining the three previous lemmas concludes the proof of Theorem 3.1.

B.1 Heterogeneous rewards

To further clarify the novelty of our setting, we contrast it with a commonly studied setup in the
literature, often referred to as the federated multi-task RL setting, where agents share identical dy-
namics but differ in their reward functions. This setting has been explored in prior work Zhu et al.
(2024); Chen et al. (2021); Yang et al. (2024). This setup does not introduce additional structural
challenges and, thus, more closely aligns with the standard single-agent setting. In particular, when
agents differ only in rewards, the optimal FRL objective over the space of history-dependent policies
is achieved by a deterministic policy. The following lemma formalizes this observation:
Lemma B.4. Let {Mc}Mc=1 be an FRL instance consisting of M MDPs that share the same tran-
sition kernel P and initial distribution ρ, but have distinct reward functions rc. Denote by J the
corresponding FRL objective. Then,

max
π∈Πdet

J(π) = max
π∈Πℓ

J(π) ,

and furthermore, the FRL objective is equivalent to the RL objective of a single MDP with reward
function equal to the average of the individual rewards.
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Algorithm 2 proj-FedAVG

Initialization: Learning rate η > 0, parameter θ0, projection set T
for r = 0 to R− 1 do

for c = 1 to M do
Set θr,0c = θr.
for h = 0 to H − 1 do

Receive random state Zr,h+1
c

Update θr,h+1
c = θr,hc + ηg

Zr,h+1
c

c (θr,hc )

Server updates parameter: θr+1 = projT (θ̄
r+1) where θ̄r+1 = 1

M

∑M
c=1 θ

r,H
c

Proof. Consider an FRL instance where each agent’s MDP is defined as Mc := (S,A, γ,P, rc, ρ).
Let π = (πt)t∈N ∈ Π be an arbitrary history-dependent policy. Since all agents share the same
transition kernel, their trajectories under π follow identical distributions. Precisely, for any t ≥ 0
and c ∈ [M ], it holds that (St

c, A
t
c) ∼ (St

1, A
t
1). Thus, the FRL objective simplifies as:

1

M

M∑
c=1

Jc(π) =
∞∑
t=0

γtEπ

[
1

M

M∑
c=1

rc(S
t
c, A

t
c)

]
=

∞∑
t=0

γtEπ

[̄
r(St

1, A
t
1)
]

,

where r̄ := 1
M

∑M
c=1 rc denotes the average reward function. This expression corresponds to the

standard RL objective of the MDP (S,A, γ,P, r̄, ρ). By (Agarwal et al., 2019, Theorem 1.7), the
optimal value of this objective is attained by a deterministic policy, which concludes the proof.

C Ascent lemma

Problem setting. In this section, we provide an ascent lemma that can be applied to a general class
of distributed non-convex optimization problems of the form

max
θ∈Rd

F (θ) =
1

M

M∑
c=1

fc(θ) , where fc(θ) := EZc∼ξc(θ)[f
Zc
c (θ)] , (13)

where each Zc is a random variable which takes its value from a distribution ξc(θ), which may
depend on θ, and takes values in a measurable set (Z,Z), and where the function (z, θ) 7→ fz

c (θ)
are measurable functions. Each function fc is only available to the client c through biased stochastic
gradients gzc (θ), whose expected value is

gc(θ) := EZc∼ξc(θ)[g
Zc
c (θ)] , (14)

but is typically different from the gradient of fc.

To solve (13), we use proj-FedAVG, an extension of projected gradient ascent to the federated set-
ting, which performs local stochastic gradient updates at the client level with step size η, aggregates
the locally updated model, and projects the resulting model on a closed convex set T ⊆ Rd. For
completeness, we give the pseudo-code for this algorithm in Algorithm 2.

Assumptions. To derive our new convergence result for this algorithm under the following as-
sumptions, which slightly differ from the classical setting, but are typical in reinforcement learning.
First, we assume that both the true gradient and its biased estimator are Lispchitz-continuous, that
the true gradient is bounded, and that the objective functions’ third derivates are uniformly bounded.
FL-1. For any c ∈ [M ], the functions ∇fc and the biased gradients gc are L2-Lipschitz, that is

∥∇fc(θ)−∇fc(θ
′)∥ ≤ L2∥θ − θ′∥ , for all θ, θ′ ∈ Rd , (15)

∥gc(θ)− gc(θ
′)∥ ≤ L2∥θ − θ′∥ , for all θ, θ′ ∈ Rd . (16)

FL-2. There exists L1 > 0, such that for all c ∈ [M ] and θ ∈ Rd,

∥∇fc(θ)∥ ≤ L1 , for all c ∈ [M ] , θ ∈ Rd . (17)
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FL-3. For any c ∈ [M ], the function fc is three times differentiable and has bounded third derivative
tensor, that is, there exists L3 < ∞ such that

∥∇3fc(θ)u
⊗2∥ ≤ L3∥u∥2 , for all θ ∈ Rd , u ∈ Rd . (18)

FL-4. For any c ∈ [M ], the gradient gradient heterogeneity is uniformly bounded, that is, there
exists ζ ≥ 0 such that

∥∇fc(θ)−∇F (θ)∥ ≤ ζ , for all c ∈ [M ] , θ ∈ Rd . (19)

FL-5. For p ∈ {2, 4}, c ∈ [M ], there exists σp
p ≥ 0 such that

EZc∼ξc(θ)[∥g
Zc
c (θ)− gc(θ)∥p] ≤ σp

p , for all c ∈ [M ] , θ ∈ Rd . (20)

FL-6. For any c ∈ [M ], there exists β ≥ 0 such that

∥gc(θ)−∇fc(θ)∥ ≤ β , for all c ∈ [M ] , θ ∈ Rd . (21)

Proof of ascent lemma. To establish an ascent lemma for Algorithm 2, we first provide two lem-
mas: in Lemma C.1, we give a bound on the expected drift, and in Lemma C.2, we provide a
bound on the variance of the global averaged parameters. We then use these two lemmas to prove
Lemma C.3, which is our main result.

In the following, we define the filtration adapted to the global and local iterates of Algorithm 2 as

Fr ∆
= σ

(
Zr′,h′

c : r′ < r, h′ ∈ {0, . . . ,H}, c′ ∈ {1, . . . ,M}
)

.

We now prove our first lemma on the expected drift of Algorithm 2.
Lemma C.1 (Bound on Expected Drift). Assume FL-1 to FL-6. Let η > 0 such that ηHL2 ≤ 1/6
and 32η2H2L2

3L
2
1 ≤ L2

2, where L2 and L1 are defined in FL-1 and FL-2. respectively. Then the
iterates of proj-FedAVG satisfy

1

MH

M∑
c=1

H−1∑
h=1

∥E
[
∇fc(θ

r)−∇fc(θ
r,h
c )
∣∣Fr

]
∥22

≤ 8η2L2
2H(H−1)

M

M∑
c=1

∥∇fc(θ
r)∥22 + 8η2L2

2H(H−1)β2 + 4 · 123η4L2
3H(H − 1)σ4

4 .

Proof. (Definition of Drift Error Terms.) To prove this lemma, we will bound each term of the sum

Uh
c

∆
= ∥E

[
∇fc(θ

r)−∇fc(θ
r,h
c )
∣∣Fr

]
∥22 .

(Bound on Drift Error Terms.) First, we use Taylor expansion to expand

E
[
∇fc(θ

r,h
c )
∣∣Fr

]
−∇fc(θ

r) = ∇2fc(θ
r)E

[
θr,hc − θr

∣∣Fr
]
+ E

[
Dr

3,c(θ
r,h
c )(θr,hc − θr)⊗2

∣∣Fr
]

,

where we defined the integral remainder as

Dr
3,c(θ

r,h
c ) =

∫ 1

0

(1− t)∇3fc(θ
r + t(θr,hc − θr))dt . (22)

We thus obtain the following bound, using Jensen’s inequality and the bound on the third derivatives
tensor of fc,

Uh
c ≤ 2∥∇2fc(θ

r)E
[
θr,hc − θr

∣∣Fr
]
∥22 + 2∥E

[
Dr

3,c(θ
r,h
c )(θr,hc − θr)⊗2

∣∣Fr
]
∥22

≤ 2L2
2∥E

[
θr,hc −θr

∣∣Fr
]
∥22 + 2L2

3E
[
∥θr,hc −θr∥42

∣∣Fr
]

, (23)

We now use the fact that θr,hc = θr − η
∑h−1

ℓ=0 g
Zr,ℓ+1

c
c (θr,ℓc ) and (21) to write

2L2
2∥E

[
θr,hc − θr

∣∣Fr
]
∥22

= 2η2L2
2

∥∥∥E[ h−1∑
ℓ=0

∇fc(θ
r) +∇fc(θ

r,ℓ
c )−∇fc(θ

r) + g
Zr,ℓ+1

c
c (θr,ℓc )−∇fc(θ

r,ℓ
c )
∣∣∣Fr

]∥∥∥2
2
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≤ 6η2L2
2h

2∥∇fc(θ
r)∥22 + 6η2L2

2h

h−1∑
ℓ=0

∥∥∥E [∇fc(θ
r)−∇fc(θ

r,ℓ
c )
∣∣Fr

] ∥∥∥2
2
+ 6η2L2

2h
2β2 ,

Completing the sum until ℓ = H − 1 and plugging this inequality in (23), we obtain

Uh
c ≤ 6η2L2

2h
2∥∇fc(θ

r)∥22 + 6η2L2
2h

H−1∑
ℓ=0

∥∥∥E [∇fc(θ
r)−∇fc(θ

r,ℓ
c )
∣∣Fr

] ∥∥∥2
2

+ 6η2L2
2h

2β2 + 2L2
3E
[
∥θr,hc −θr∥42

∣∣Fr
]

.

Now, we average the above inequality for h = 0 to H − 1 and c = 1 to M , which gives

1

MH

M∑
c=1

H−1∑
h=1

Uh
c ≤ 3η2L2

2H(H−1)

M

M∑
c=1

∥∇fc(θ
r)∥22 +

3η2L2
2H(H−1)

MH

M∑
c=1

H−1∑
h=0

Uh
c

+ 3η2L2
2H(H − 1)β2 +

2L2
3

MH

M∑
c=1

H−1∑
h=0

E
[
∥θr,hc − θr∥42

∣∣Fr
]

,

where we used
∑H−1

h=0 h2 ≤ H
∑H−1

h=0 h = H2(H−1)
2 . Using that 3η2L2

2H(H − 1) ≤ 1/2, reorga-
nizing the terms, and multiplying the resulting inequality by 2, we obtain

1

MH

M∑
c=1

H−1∑
h=1

Uh
c ≤ 6η2L2

2H(H−1)

M

M∑
c=1

∥∇fc(θ
r)∥22

+
4L2

3

MH

M∑
c=1

H−1∑
h=0

E
[
∥θr,hc −θr∥42

∣∣Fr
]
+6η2L2

2H(H−1)β2 . (24)

(Fourth Order Drift Terms.) We now bound the fourth moment of the drift. To this end, we define

Vh
c

∆
= E

[
∥θr,hc − θr∥4

∣∣Fr
]

,

and we write θr,hc = θr + η
∑h−1

ℓ=0 g
Zr,ℓ+1

c
c (θr,ℓc ), and we decompose each update as

g
Zr,ℓ+1

c
c (θr,ℓc ) = g

Zr,ℓ+1
c

c (θr,ℓc )− gc(θ
r,ℓ
c ) + gc(θ

r,ℓ
c )−∇fc(θ

r,ℓ
c ) +∇fc(θ

r,ℓ
c )−∇fc(θ

r) +∇fc(θ
r) .

This gives the bound

Vh
c ≤ 43η4 E

[∥∥∥ h−1∑
ℓ=0

g
Zr,ℓ+1

c
c (θr,ℓc )− gc(θ

r,ℓ
c )
∥∥∥4∣∣∣∣∣Fr

]
︸ ︷︷ ︸

T1

+43η4 E

[∥∥∥ h−1∑
ℓ=0

gc(θ
r,ℓ
c )−∇fc(θ

r,ℓ
c )
∥∥∥4∣∣∣∣∣Fr

]
︸ ︷︷ ︸

T2

+ 43η4 E

[∥∥∥ h−1∑
ℓ=0

∇fc(θ
r,ℓ
c )−∇fc(θ

r)
∥∥∥4∣∣∣∣∣Fr

]
︸ ︷︷ ︸

T3

+43η4 h4∥∇fc(θ
r)∥4︸ ︷︷ ︸

T4

. (25)

We bound T1 using Burkholder’s inequality (Theorem 8.6, Osękowski, 2012), which gives

T1 ≤ 34
{ h−1∑

ℓ=0

E1/2
[
∥gZ

r,ℓ+1
c

c (θr,ℓc )− gc(θ
r,ℓ
c )∥4

∣∣∣Fr
]}2

≤ 34h2σ4
4 . (26)

The term T2 is a bias term, which we bound using (21),

T2 ≤ h3
h−1∑
ℓ=0

E
[
∥gc(θr,ℓc )−∇fc(θ

r,ℓ
c )∥4

∣∣Fr
]
≤ h4β4 . (27)

Then, we bound T3 using (15)

T3 ≤ h3
h−1∑
ℓ=0

E
[
∥∇fc(θ

r,ℓ
c )−∇fc(θ

r)∥4
∣∣Fr

]
≤ L4

2h
3
h−1∑
ℓ=0

E
[
∥θr,ℓc − θr∥4

∣∣Fr
]

. (28)
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Finally, we bound T4 using gradient’s boundedness (17),

T4 ≤ L2
1h

4∥∇fc(θ
r)∥2 . (29)

Plugging (26), (27), (28), (29) in (25), we obtain

Vh
c ≤ 43η4h4L2

1∥∇fc(θ
r)∥2 + 43η4h4β4 + 43η4L4

2h
3
h−1∑
ℓ=0

Vℓ
c + 3 · 123η4h2σ4

4 .

Like for the terms Uh
c , we complete the sum and average over h = 0 to H − 1, which gives

1

H

H−1∑
h=0

Vh
c ≤ 43η4L4

2H
3(H − 1)

5H

H−1∑
h=0

Vh
c +

3 · 123η4H(H − 1)

3
σ4
4

+
43η4H2(H − 1)2

5

(
L2
1∥∇fc(θ

r)∥2 + β4
)

.

Using ηHL2 ≤ 1/6, averaging over c = 1 to M , collecting the terms in Vh
c on the left hand side,

and multiplying by 2, we obtain

1

MH

M∑
c=1

H−1∑
h=0

Vh
c ≤ 2 · 43η4H2(H − 1)2

5

{
β4 + L2

1∥∇fc(θ
r)∥2

}
+

6 · 123η4H(H − 1)

3
σ4
4 .

(30)

(Final Result.) Plugging (30) back in (24) and using L2
3η

2H2L2
1 ≤ L2

2/32 and β ≤ L1 gives

1

MH

M∑
c=1

H−1∑
h=1

Uh
c ≤

(
6η2L2

2H(H−1) +
44η4L2

3L
2
1H

2(H − 1)2

5

) 1

M

M∑
c=1

∥∇fc(θ
r)∥22

+
124η4L2

3H(H − 1)

3
σ4
4 + 6η2L2

2H(H−1)β2 +
44η4L2

3H
2(H − 1)2

5
β4

≤
(
6η2L2

2H(H−1) + 2η2L2
2(H − 1)2

) 1

M

M∑
c=1

∥∇fc(θ
r)∥22

+ 4 · 123L2
3η

4H(H − 1)σ4
4 +

(
6η2L2

2H(H−1) + 2η2L2
2(H − 1)2

)
β2 ,

and the result follows.

Lemma C.2 (Bound on global iterates variance). Assume FL-1 to FL-6. Assume that ηHL2 ≤ 1/6
Then the iterates of proj-FedAVG satisfy

E
[
∥θ̄r+1 − E

[
θ̄r+1

∣∣Fr
]
∥2] ≤ 3η2Hσ2

2

M
.

Proof. Since θ̄r+1 = 1/M
∑M

c=1 θ
r,H
c and {θr,Hc }Mc=1 are independent conditional to Fr,

E
[∥∥∥θ̄r+1 − E

[
θ̄r+1

∣∣Fr
] ∥∥∥2] = 1

M2

M∑
c=1

E
[
∥θr,Hc − E

[
θr,Hc

∣∣Fr
]
∥2
]
.

Then, we have, for h ∈ {0, . . . ,H − 1}, using that E
[
g
Zr,h+1

c
c (θr,hc )

∣∣∣Fr
]
= E

[
gc(θ

r,h
c )
∣∣Fr

]
,

Ar,h+1
c := E

[
∥θr,h+1

c − E
[
θr,h+1
c

∣∣Fr
]
∥2
]

= E
[∥∥∥θr,hc −E

[
θr,hc

∣∣Fr
]
+η
(
g
Zr,h+1

c
c (θr,hc )−gc(θ

r,h
c )+gc(θ

r,h
c )−E

[
gc(θ

r,h
c )
∣∣Fr

] )∥∥∥2] .

Since {Zr,h
c }Hh=1 are independent conditional to Fr, we have, using (20),

Ar,h+1
c = E

[∥∥∥θr,hc − E
[
θr,hc

∣∣Fr
]
+ η
(
gc(θ

r,h
c )− E

[
gc(θ

r,h
c )
∣∣Fr

] )∥∥∥2]+ η2σ2
2 . (31)
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Then, by Young’s inequality, we have

E
[∥∥∥θr,hc − E

[
θr,hc

∣∣Fr
]
+ η
(
gc(θ

r,h
c )− E

[
gc(θ

r,h
c )
∣∣Fr

] )∥∥∥2]
≤ (1 + ηL2)E

[∥∥∥θr,hc − E
[
θr,hc

∣∣Fr
] ∥∥∥2]+ (η2 + η/L2)E

[∥∥∥gc(θr,hc )− E
[
gc(θ

r,h
c )
∣∣Fr

] ∥∥∥2]
Finally, we have, by Young’s inequality and (15),

E
[∥∥∥gc(θr,hc )− E

[
gc(θ

r,h
c )
∣∣Fr

] ∥∥∥2]
≤ 2E

[∥∥∥gc(θr,hc )− gc(E
[
θr,hc

∣∣Fr
]
)
∥∥∥2]+ 2E

[∥∥∥gc(E [θr,hc

∣∣Fr
]
)− E

[
gc(θ

r,h
c )
∣∣Fr

] ∥∥∥2]
≤ 2L2

2E
[∥∥∥θr,hc − E

[
θr,hc

∣∣Fr
] ∥∥∥2]+ 2L2

2E
[∥∥∥E [θr,hc

∣∣Fr
]
− θr,hc

∥∥∥2]
≤ 4L2

2E
[∥∥∥θr,hc − E

[
θr,hc

∣∣Fr
] ∥∥∥2] ,

where we used Jensen’s inequality in the last inequality. Then, notice that 4(η2 + η/L2)L
2
2 =

4(η2L2
2 + ηL2) ≤ 5ηL2 since ηL2 ≤ 1/4. Plugging this in (31), we obtain

Ar,h+1
c ≤ (1 + 6ηL2)A

r,h
c + η2σ2

2 .

And unrolling this inequality gives

E
[
∥θr,Hc − E

[
θr,Hc

∣∣Fr
]
∥2
]
≤ η2

H∑
h=0

(1 + 6ηL2)
hσ2

2 ≤ 3η2Hσ2
2 ,

where the second inequality comes from ηHL2 ≤ 1/6, which gives (1+6ηL2)
h ≤ (1+1/H)H ≤ 3,

and the lemma follows.

Lemma C.3 (Ascent Lemma). Assume FL-1 to FL-6. For any η > 0 such that ηHL2 ≤ 1/6 and
32η2H2L2

3L
2
1 ≤ L2

2, the iterates of proj-FedAVG satisfy

−E
[
F (θ̄r+1)

∣∣Fr
]
≤ −F (θr)− ηH

4
∥∇F (θr)∥22 +

3η2L2Hσ2
2

2M

+ 2ηHβ2 + 8η3L2
2H

2(H − 1)ζ2 + 4 · 123η5L2
3H

2(H − 1)σ4
4 .

Proof. Smoothness of fc gives |F (θ̄r+1)−F (θr)−⟨∇F (θr), θ̄r+1− θr⟩| ≤ (L2/2)∥θ̄r+1− θr∥2,
which implies that

−F (θ̄r+1) ≤ −F (θr)− ⟨∇F (θr), θ̄r+1 − θr⟩ + L2

2
∥θ̄r+1 − θr∥22 .

Let κ = 1√
ηH

. Taking the expectation conditionally on Fr and using the polarization identity
2⟨a, b⟩ = ∥a∥22 + ∥b∥22 − ∥a− b∥22 for a, b ∈ Rd, we get

−E
[
F (θ̄r+1)

∣∣Fr
]
+ F (θr) ≤ −⟨κ−1∇F (θr), κE

[
θ̄r+1 − θr

∣∣Fr
]
⟩ + L2

2
E
[
∥θ̄r+1 − θr∥22

∣∣Fr
]

= − 1

2κ2
∥∇F (θr)∥22 +

1

2κ2
∥∇F (θr) + κ2E

[
θr − θ̄r+1

∣∣Fr
]
∥22︸ ︷︷ ︸

(A)

+
L2

2
E
[
∥θ̄r+1 − θr∥22

∣∣Fr
]
− κ2

2
∥E
[
θ̄r+1 − θr

∣∣Fr
]
∥22︸ ︷︷ ︸

(B)

. (32)

The term (A) is a drift term, that is due to local updates, and is due to heterogeneity, while the term
(B) is a second order term error term and a variance term. We now bound each of these two terms.

Bounding (A). Using the fact that F = 1
M

∑M
c=1 fc, the definition κ2 = 1/ηH , the definition of

θ̄r+1 and Jensen’s inequality, we have∥∥∥∇F (θr) + κ2E
[
θr − θ̄r+1

∣∣Fr
] ∥∥∥2

2
=
∥∥∥E[ 1

M

M∑
c=1

(
∇fc(θ

r)− 1

H

H−1∑
h=0

g
Zr,h+1

c
c (θr,hc )

)∣∣∣Fr
]∥∥∥2

2
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≤ 1

HM

M∑
c=1

H−1∑
h=0

∥∥∥E [∇fc(θ
r)− g

Zr,h
c

c (θr,hc )
∣∣∣Fr

] ∥∥∥2
2

=
1

HM

M∑
c=1

H−1∑
h=0

∥∥∥E [∇fc(θ
r)− gc(θ

r,h
c )
∣∣Fr

] ∥∥∥2
2
,

where the last equality holds by independence of Zr,h+1
c and Fc

r,h. By decomposing

∇fc(θ
r)− gc(θ

r,h
c ) = ∇fc(θ

r)−∇fc(θ
r,h
c ) +∇fc(θ

r,h
c )− gc(θ

r,h
c ) .

Using Young’s inequality and bounding the bias using (21), we obtain∥∥∥∇F (θr) + κ2E
[
θr − θ̄r+1

∣∣Fr
] ∥∥∥2

2
≤ 2

HM

M∑
c=1

H−1∑
h=0

∥E
[
∇fc(θ

r)−∇fc(θ
r,h
c )
∣∣Fr

]
∥22 + 2β2 .

Using Lemma C.1 to bound the first term, and multiplying by 1/(2κ2) = ηH/2, we obtain

(A) ≤ 8η3L2
2H

2(H − 1)

M

M∑
c=1

∥∇fc(θ
r)∥22

+ 4 · 123 · 2L2
3η

5H2(H − 1)σ4
4 + (1 + 8η2L2

2H(H − 1))ηHβ2 .

(33)

Bounding (B). We decompose (B) by writing θ̄r+1 = E
[
θ̄r+1

∣∣Fr
]
+ θ̄r+1 − E

[
θ̄r+1

∣∣Fr
]
,

which gives

(B) =
L2

2
E
[
∥E
[
θ̄r+1

∣∣Fr
]
− θ̄r+1∥2

∣∣Fr
]
+

L2

2
∥E
[
θ̄r+1 − θr

∣∣Fr
]
∥22 −

κ2

2
∥E
[
θ̄r+1 − θr

∣∣Fr
]
∥22

=
L2

2
E
[
∥E
[
θ̄r+1

∣∣Fr
]
− θ̄r+1∥2

∣∣Fr
]
+
(L2

2
− κ2

2

)
∥E
[
θ̄r+1 − θr

∣∣Fr
]
∥22 .

Since ηHL2 ≤ 1, we have L2

2 − κ2

2 ≤ L2

2 − 1
2ηH ≤ 0, and the second term is negative. The second

term is a variance term, that we bound using Lemma C.2, which gives

(B) ≤ 3η2L2Hσ2
2

2M
. (34)

Bound on (32). Plugging in the bounds (33) and (34) on (A) and (B) in (32) yields

−E
[
F (θ̄r+1)

∣∣Fr
]
+ F (θr) ≤ −ηH

2
∥∇F (θr)∥22 +

8η3L2
2H

2(H − 1)

M

M∑
c=1

∥∇fc(θ
r)∥22

+ 4 · 123η5L2
3H

2(H − 1)σ4
4 + 2ηHβ2 +

3η2L2Hσ2
2

2M
, (35)

where we used ηHL2 ≤ 1/6 to bound (1+8η2L2
2H(H − 1))ηHβ2 ≤ 2ηHβ2. Moreover, we have

8η2L2
2H

2 ≤ 1/4 and 1
M

∑M
c=1∥∇fc(θ

r)∥2 ≤ ∥∇F (θr)∥2 + ζ2, which gives the bound

8η3L2
2H

2(H − 1)

M

M∑
c=1

∥∇fc(θ
r)∥22 ≤ ηH

4
∥∇F (θr)∥22 + 8η3L2

2H
2(H − 1)ζ2 ,

and the result of the lemma follows from plugging this inequality in (35).

D Analysis of S-FedPG

S-FedPG can be interpreted as a specific instance of proj-FedAVG, where the projection set is
chosen as T = R|S|×|A|, the local objective is defined as fc = Jsm,c, and the agent data distribution
ξc(θ) corresponds to νc(θ)—the distribution induced by sampling B truncated trajectories from the
policy πθ, as defined in (3).
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Given a parameter θ ∈ R|S|×|A| and an observation Zc ∼ νc(θ), we recall the form of the biased
estimator (defined in (6)) for the stochastic gradient:

gZc
sm,c(θ) :=

1

B

B∑
b=1

T−1∑
t=0

γt

(
t∑

ℓ=0

∇ log πθ(A
ℓ
c,b | Sℓ

c,b)

)
r(St

c,b, A
t
c,b) . (36)

Define also

gsm,c(θ) = EZc∼νc(θ)[g
Zc
sm,c(θ)]. (37)

To apply the ascent lemma (Lemma C.3), it remains to verify that Assumptions FL-1 through FL-6
are satisfied. We establish these conditions in the following.

D.1 Checking the assumptions and establishing a local Łojasiewicz structure

For a given policy π and agent c ∈ [M ], the value function V π
c : S → R, is defined as:

V π
c (s)=Eπ

[ ∞∑
t=0

γtr(St
c, A

t
c)

∣∣∣∣∣S0
c = s

]
, (38)

where for all t ≥ 0, At
c ∼ π(·|St

c) is chosen using the shared policy, and St+1
c ∼ Pc(.|St

c, A
t
c)

follows the local dynamics of agent c’s environment. We define V π
c (ρ) as the value function when

the initial distribution is ρ. Similarly, the Q-function of a policy π for agent c is

Qπ
c (s, a) := r(s, a) + γ

∑
s′∈S

Pc(s
′|s, a)V π

c (s′) . (39)

This allows to define the advantage function Aπ
c (s, a) = Qπ

c (s, a) − V π
c (s). Define Jsm,c(θ) :=

Jc(πθ). Given a policy π and initial distribution ρ, we define the occupancy measure as

dρ,π
c (s) := (1− γ)

∞∑
t=0

γtρPt
c,π(s) , Pc,π(s

′|s) =
∑

π(a|s)Pc(s
′|s, a) . (40)

We define the advantage function of a policy πθ as

Aπθ
c (s, a) := Qπθ

c (s, a)− V πθ
c (s) , for all (s, a) ∈ S ×A . (41)

Following Mei et al. (2020), we will use the following expression of the gradient.

Lemma D.1 (Lemma 10 from Mei et al. (2020)). We have

∂Jsm,c(θ)

∂θ(s, a)
=

1

1− γ
· dρ,πθ

c (s)πθ(a|s)Aπθ
c (s, a) , (42)

where Aπθ
c is defined in (41).

First, we establish the smoothness of gsm,c(θ).

Lemma D.2. For any c ∈ [M ], the function gsm,c is L2,sm
∆
= 8/(1 − γ)3-smooth, that is for all

θ, θ′ ∈ R|S|×|A|, it holds that

∥gsm,c(θ
′)− gsm,c(θ)∥ ≤ L2,sm∥θ′ − θ∥2 .

Proof. The result follows from setting λ = 0 in the bound of Lemma E.2.

Lemma D.3. For c ∈ [M ], the function Jsm,c is L2,sm = 8/(1 − γ)3-smooth and Jsm is also
L2,sm-smooth.

Proof. The result follows from Lemma 7 of Mei et al. (2020) and the fact that a mean of smooth
functions is a smooth functions with the same smoothness coefficient.
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Lemma D.4. For all c ∈ [M ] and θ ∈ R|S|×|A|, it holds

∥∇Jsm,c(θ)∥2 ≤ L1,sm , where L1,sm
∆
=

1

(1− γ)2
.

Proof. By norm comparisons, and Lemma D.1, it holds that

∥Jsm,c(θ)∥2 ≤ ∥Jsm,c(θ)∥1 ≤ 1

1− γ

∑
s,a

dρ,πθ
c (s)πθ(a|s)|Aπθ

c (s, a)| .

Finally, using that for any (s, a) ∈ S×A, we have |Aπθ
c (s, a)| ≤ 1/(1−γ) concludes the proof.

Lemma D.5. The spectral norm of the third derivative tensor is bounded by L3,sm := 480·(1−γ)−4,
i.e., for any u, v, w ∈ R|S|×|A| it holds

|d3Jsm,c(θ)[u, v, w]| = |∇3Jsm,c(θ)u⊗ v ⊗ w| ≤ 480

(1− γ)4
∥u∥2∥v∥2∥w∥2 .

Proof. By Lemma G.9 with λ = 0 we have for any u, v, w ∈ R|S|×|A|

∥d3V πθ
c [u, v, w]∥∞ ≤ 480

(1− γ)4
∥u∥2∥v∥2∥w∥2 .

Next, we notice that
d3Jsm,c(θ)[u, v, w] = ρ⊤d3V πθ

c [u, v, w] ,

and the result follows from the fact that ρ is a probability distribution.

Lemma D.6. Assume A-1. Let c ∈ [M ] and θ ∈ R|S|×|A|. It holds that

∥∇Jsm(θ)−∇Jsm,c(θ)∥22 ≤ ζ2sm , where ζ2sm :=
38ε2P

(1− γ)6
.

Proof. The result follows from setting λ = 0 in the bound of Lemma E.6.

The following lemma bounds the bias and the variance of the estimator of this stochastic gradient.
Lemma D.7 (Lemmas 6 and 7 from Ding et al. (2025)). Consider the stochastic gradient defined in
(36). For any θ ∈ R|S|×|A|, we have

∥∇Jsm,c(θ)− gsm,c(θ)∥2 ≤ βsm :=
2γT

1− γ

(
T +

1

1− γ

)
,

Var(gZc
sm,c(θ)) ≤ σ2

sm,2 :=
12

B(1− γ)4
.

Finally, we show that the fourth-order moment of our biased estimator is bounded.

Lemma D.8. For any c ∈ [M ], for any θ ∈ R|S|×|A|, the fourth central moment of gZc
sm,c is bounded,

that is

EZc∼νc(θ)

[
∥gZc

sm,c(θ)− gsm,c(θ)∥42
]
≤ σ4

sm,4 :=
1120

B2(1− γ)8
. (43)

Proof. The result follows from setting λ = 0 in the bound of Lemma E.8.

Lemma D.9 (Lemma 8 of Mei et al. (2020)). For all c ∈ [M ], for any θ ∈ R|S|×|A|, it holds

∥∇Jsm,c(θ)∥22 ≥ 2µsm,c(θ) ·
[
J⋆
sm,c − Jsm,c(θ)

]2
,

where

µsm,c(θ)
∆
=

1

2|S| ·min
s

πθ(a
⋆(s)|s)2 ·

∥∥∥∥∥d
ρ,π⋆

c
c

dρ,θ
c

∥∥∥∥∥
−2

∞

,

and where π⋆
c is an optimal deterministic policy of agent c, and a⋆(s) is the action picked by this

policy when the agent is in state s.
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In case of small heterogeneity between the agents, i.e A-1, this precedent Lemma, combined with
Lemma D.6 allows us to establish that the global objective satisfies a Relaxed Łojasiewicz-type
inequality.
Lemma D.10. Assume A-1. For any θ ∈ R|S|×|A|, it holds that

ζ2sm + ∥∇Jsm(θ)∥22 ≥ µsm(θ)(J
⋆
sm − Jsm(θ))

2 , with µsm(θ) = min
c∈[M ]

µsm,c(θ) .

Proof. Let θ ∈ R|S|×|A|. Using Lemma D.9 and the triangle inequality, we have for any c ∈ [M ]√
min
c∈[M ]

2µsm,c(θ)
[
J⋆
sm,c − Jsm,c(θ)

]
≤
√
2µsm,c(θ)

[
J⋆
sm,c − Jsm,c(θ)

]
≤ ∥∇Jsm,c(θ)∥2 .

We then decompose ∇Jsm,c(θ) = ∇Jsm,c(θ) − ∇Jsm(θ) + ∇Jsm(θ) and use triangle inequality
and Lemma D.6 to bound

∥∇Jsm,c(θ)∥2 ≤ ∥∇Jsm,c(θ)−∇Jsm(θ)∥2 + ∥∇Jsm(θ)∥2 ≤ ζsm + ∥∇Jsm(θ)∥2 .

Averaging the resulting inequality over all the agents, taking the square, using that J⋆
sm ≤

1/M
∑M

c=1 J
⋆
sm,c, and applying Young’s inequality concludes the proof.

D.2 Convergence rates, sample, and communication complexities

We preface the proof by an elementary Lemma.
Lemma D.11. Let (wr)

∞
r=0 be a sequence of positive real numbers, and let κ > 0, B > 0. Assume

that for all r ≥ 0,
wr+1 ≤ wr − κw2

r +B.

Then for every integer r ≥ 0 one has

wr ≤
√

B

κ
+B +

w0

1 + κ r w0
.

Proof. Set M =
√
B/κ and fix r ∈ N. We split into two cases:

Case 1: wk > M for all k ∈ {0, . . . r}. Define vk := wk −M which is positive as wk > M . Then
for any k ∈ {0, . . . r}, it holds that

vk+1 = wk+1 −M ≤ wk −M − κ(wk −M +M)2 +B ≤ vk − κv2k ,

where in the last inequality, we used that for any a, b ≥ 0, we have (a + b)2 ≥ a2 + b2. Dividing
the preceding inequality by v2k yields

vk+1 − vk
v2k

≤ −κ . (44)

For x > 0, define g(x) = x−1. By convexity of g on R⋆
+, we have g(vk+1) ≥ g(vk) + (vk+1 −

vk)g
′(vk) which can be rewritten as

v−1
k+1 ≥ v−1

k − (vk+1 − vk)
1

v2k
,

and which implies, after using (44)

v−1
k − v−1

k+1 ≤ vk+1 − vk
v2k

≤ −κ .

Summing up both sides over k = 0 . . . r and rearranging the terms yields

(wr −M)−1 ≥ κr + w−1
0 .

Finally, we get

wr ≤ M +
w0

1 + κrw0
.

Case 2: There exists some 0 ≤ r0 ≤ r with wr0 ≤ M . Let us prove that for any 0 ≤ x ≤ M + B,
it holds that 0 ≤ x − κx2 + B ≤ M + B. We distinguish two sub-cases. First, if x ≤ M
then it holds that x − κx2 + B ≤ x + B ≤ M + B. Alternatively, if M ≤ x ≤ M + B then
x − κx2 + B ≤ x − κM2 + B = x ≤ M + B. Finally, using the preceding inequality combined
with an immediate recursion proves that for all k ≥ r0, we have wk ≤ B +M .
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Theorem D.12 (Convergence rates of S-FedPG). Assume A-1 and A-2 and set T = R|S|×|A|.
Additionally, assume that there exists µsm > 0 such that such that infr∈[N] µsm(θ

r) ≥ µsm > 0. For
any η > 0 such that ηHL2,sm ≤ 1/74 the iterates of S-FedPG satisfy

J⋆ − E[J(πθR)] ≤ J⋆
sm − Jsm(θ

0)

1 +R · (J⋆
sm − Jsm(θ0)) · (ηHµsm/4)

+

(
6ηL2,smσ

2
sm,2

Mµsm

)1/2

+

(
16 · 123η4L2

3,smH(H − 1)σ4
sm,4

µsm

)1/2

+

(
2ζ2sm
µsm

)1/2

+

(
8β2

sm

µsm

)1/2

+
ζ2sm

37L2,sm
+

ησ2
sm,2

12M
+

β2
sm

9L2,sm
+

3 · 122η4L2
3,smH(H − 1)σ4

sm,4

L2,sm
.

Proof. First note that no projection is used, which implies that θ̄r+1 = θr+1. Under A-1 and A-2,
all the results of Appendix D.1 hold, satisfying thereby the assumptions of Lemma C.3. Importantly
note that if ηHL2,sm ≤ 1/74 then it holds that 32η2H2L2

3,smL
2
1,sm ≤ L2

2,sm (as 32L2
3,smL

2
1,sm ≤

742L4
2,sm by Lemma D.3, Lemma D.4, and Lemma D.5). Applying Lemma C.3 yields

−E
[
Jsm(θ

r+1)
∣∣Fr

]
≤ −Jsm(θ

r)− ηH

4
∥∇Jsm(θ

r)∥22 +
3η2L2,smHσ2

sm,2

2M

+ 2ηHβ2
sm + 8η3L2

2,smH
2(H − 1)ζ2sm + 4 · 123η5L2

3,smH
2(H − 1)σ4

sm,4 .

Adding J⋆
sm, and using Lemma D.10 yields

J⋆
sm − E

[
Jsm(θ

r+1)
∣∣θr]

≤ J⋆
sm − Jsm(θ

r)− ηHµsm

4
(J⋆

sm − Jsm(θ
r))2 +

ηH

4
ζ2sm +

3η2L2,smHσ2
sm,2

2M
+ 2ηHβ2

sm

+ 8η3L2
2,smH

2(H − 1)ζ2sm + 4 · 123η5L2
3,smH

2(H − 1)σ4
sm,4 . (45)

Taking the expectation with respect to all the stochasticity, applying Jensen’s inequality, and using
that ηHL2,sm ≤ 1/74 to simplify the heterogeneity terms gives

δr+1 ≤ δr − κ(δr)2 +B ,

where we defined δr = J⋆
sm − E[Jsm(θr)], κ = ηHµsm

4 , and

B =
ηH

2
ζ2sm +

3η2L2,smHσ2
sm,2

2M
+

4β2
sm

3L2,sm
+ 4 · 123η5L2

3,smH
2(H − 1)σ4

sm,4 .

Finally, applying Lemma D.11 on the sequence δr concludes the proof.

Recall that

L1,sm =
1

(1− γ)2
, L2,sm =

8

(1− γ)3
, L3,sm =

480

(1− γ)4
, ζ2sm =

38ε2P
(1− γ)6

,

βsm =
2γTT

1− γ
+

2γT

(1− γ)2
, σ2

sm,2 =
12

(1− γ)4B
, σ4

sm,4 =
1120

(1− γ)8B2
,

which are defined respectively in Lemmas D.2 and D.4 to D.8. We obtain the following simplified
result.
Corollary D.13 (Simplified convergence rates of S-FedPG). Assume A-1 and A-2, and no projection
(i.e., set T = R|S|×|A|). Additionally, assume that there exists µsm ∈ (0, 1) such that, with proba-
bility 1, infr∈[N] µsm(θ

r) ≥ µsm. For any η > 0 such that ηH ≤ (1 − γ)3/592, T ≥ 4(1 − γ)−2,
and M ·B ≥ (1− γ)−1, the iterates of S-FedPG satisfy

J⋆
sm − E[Jsm(θR)] ≤

J⋆
sm − Jsm(θ

0)

1 +R · (J⋆
sm − Jsm(θ0)) · ηHµsm/4

+
25η1/2

µ
1/2
sm M1/2B1/2 · (1− γ)3.5

+
2 · 78η2H1/2(H − 1)1/2

µ
1/2
sm (1− γ)8B

+
13TγT

µ
1/2
sm (1− γ)

+
10εP

µ
1/2
sm (1− γ)3

.
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Corollary D.14 (Sample and Communication Complexity of S-FedPG). Assume A-1 and A-2 and
no projection (i.e., set T = R|S|×|A|). Additionally, assume that there exists µsm ∈ (0, 1) such
that such that infr∈[N] µsm(θ

r) ≥ µsm > 0. Let 1 ≥ ϵ ≥ 50εPµ
−1/2
sm (1 − γ)−3. Then, for a

properly chosen truncation horizon, step size, and number of local updates, S-FedPG learns an
ϵ-approximation of the optimal objective with a number of communication rounds

R ≥ 114 · [(J⋆
sm − Jsm(θ

0))− ϵ/9]

(J⋆
sm − Jsm(θ0))µsmϵ(1− γ)3

,

for a total number of sampled trajectories per agent of

RHB ≥ max
( 8

µsm(1− γ)3
,

56

µ2
smMB(1− γ)7ϵ2

,
77

Bµ
3/2
sm ϵ(1− γ)5

)36B[(J⋆
sm − Jsm(θ

0))− ϵ/9]

(J⋆
sm − Jsm(θ0))ϵ

.

Proof. First, we set the truncation horizon to

T ≥ 2

1− γ
max

(
2

1− γ
, log

(
65

ϵµ
1/2
sm (1− γ)

))
.

Secondly, we require (i) that η ≤ 1/L2,sm, and that (ii) each variance terms to be smaller than ϵ/5,
which gives the condition on the step size

η ≤ min
(
(1− γ)3/8,

µsmMB(1− γ)7ϵ2

56
,
Bµ

1/2
sm,ϵ(1− γ)5

77

)
, (46)

where the second element of the min comes from
25η1/2

µ
1/2
sm M1/2B1/2 · (1− γ)3.5

≤ ϵ

5
,

and the third comes from
2 · 78η2H1/2(H − 1)1/2

µ
1/2
sm (1− γ)8B

≤ 2 · 76η
6µ

1/2
sm (1− γ)5B

≤ ϵ

5
.

Then, H has to satisfy ηH ≤ (1− γ)3/592 This requires

H ≤ (1− γ)3

592η
.

Finally, we require that the number of communications is at least

R ≥ J⋆
sm − Jsm(θ

0)− ϵ/5

(J⋆
sm − Jsm(θ0))ηHµsmϵ/20

≥ 114L2,sm[(J
⋆
sm − Jsm(θ

0))− ϵ/9]

(J⋆
sm − Jsm(θ0))µsmϵ(1− γ)3

.

The sample complexity follows from RHB ≥ 20[(J⋆
sm−Jsm(θ0))−ϵ/5]

(J⋆
sm−Jsm(θ0))ϵ

1
µsmηB and (46).

E Analysis of RS-FedPG

RS-FedPG is a special instance of proj-FedAVG in which, the local objective function is fc =
Jr,c =: Jsm,c + λHρ

c , where for any θ ∈ R|S|×|A| we have

Hρ
c (θ)

∆
= −Eπ

[ ∞∑
t=0

γt log(πθ(A
t
c|St

c)) | S0
c ∼ ρ

]
. (47)

We additionally define the global objective of the algorithm as Jr := 1
M

∑M
c=1 Jr,c. The client-

specific data distribution ξc(θ) corresponds to νc(θ), as defined in Eq. (3). For a given parameter
θ ∈ R|S|×|A| and an observation Zc ∼ νc(θ), we define the biased stochastic estimator of the
gradient of the local objective Jr,c as:

gZc
r,c(θ) :=

1

B

B∑
b=1

T−1∑
t=0

γt

(
t∑

ℓ=0

∇ log πθ(a
ℓ
c,b | Sℓ

c,b)

)[
r(St

c,b, A
t
c,b)− λ log(πθ(A

t
c,b, S

t
c,b))

]
.

(48)
We also define

gr,c(θ) = EZc∼νc(θ)[g
Zc
r,c(θ)] .

The applicability of the ascent lemma relies on the validity of Assumptions FL-1–FL-6, which we
proceed to verify in the subsequent analysis.
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E.1 Checking the assumptions and establishing a local Łojasiewicz structure

For convenience, we recall the definitions of the regularised value function, the regularised Q-
function, and the regularised advantage function defined in Geist et al. (2019):

Ṽ πθ
c (s) := V πθ

c (s) + λHs
c (θ) , where Hs

c (θ) = −E

[ ∞∑
t=0

γt log(πθ(A
t
c|St

c)) | S0
c = s

]
(49)

Q̃πθ
c (s, a) := r(s, a) + γ

∑
s′∈S

Pc(s
′|s, a)Ṽ πθ

c (s′) , (50)

Ãπθ
c (s, a) := Q̃πθ

c (s, a)− λ log(πθ(a | s))− Ṽ πθ
c (s) , for all (s, a) ∈ S ×A . (51)

Following Mei et al. (2020), we will use the following expression of the gradient.

Lemma E.1 (Lemma 10 from Mei et al. (2020)). We have

∂Jr,c(θ)

∂θ(s, a)
=

1

1− γ
· dρ,πθ

c (s)πθ(a|s)Ãπθ
c (s, a) , (52)

where Ãπθ
c is defined in (51).

First, we establish the smoothness of gr,c(θ).

Lemma E.2. For any c ∈ [M ], the function gr,c is L2,r
∆
= (8+λ(4+8 log(|A|))/(1− γ)3-smooth,

that is for all θ, θ′ ∈ R|S|×|A|, it holds that

∥gr,c(θ′)− gr,c(θ)∥ ≤ L2,r∥θ′ − θ∥2 .

Proof. Fix any θ ∈ R|S|×|A| and c ∈ [M ]. Let T := (S0, A0, . . . , ST−1, AT−1) be a random
variable distributed according to νc(θ), as defined in (3). Then, gr,c(θ) can be equivalently expressed
as

gr,c(θ) =

T−1∑
t=0

γt
t∑

ℓ=0

ET∼νc(θ)

[
∇ log πθ(A

ℓ | Sℓ)
(
r(St, At)− λ log(πθ(A

t | St))
)]︸ ︷︷ ︸

Et
ℓ(θ)

.

Denote by Et
ℓ(θ, s, a) the coefficient at coordinate (s, a) of Et

ℓ(θ). Using the REINFORCE formula
(Lemma G.2), for any (s̄, ā), we can express the partial derivative of Et

ℓ(θ, s, a) with respect to
θ(s̄, ā) as

∂Et
ℓ(θ, s, a)

∂θ(s̄, ā)
=

∂

∂θ(s̄, ā)

[
ET∼νc(θ)

[
∂ log πθ(A

ℓ | Sℓ)

∂θ(s, a)

(
r(St, At)− λ log(πθ(A

t | St))
)]]

= ET∼νc(θ)

[
∂ log(νc(θ;T))

∂θ(s̄, ā)
· ∂ log πθ(A

ℓ | Sℓ)

∂θ(s, a)

(
r(St, At)− λ log(πθ(A

t | St))
)]

︸ ︷︷ ︸
Ft

ℓ(s,a,s̄,ā)

+ ET∼νc(θ)

[
∂2 log πθ(A

ℓ | Sℓ)

∂θ(s, a)∂θ(s̄, ā)

(
r(St, At)− λ log(πθ(A

t | St))
)]

︸ ︷︷ ︸
Gt

ℓ(s,a,s̄,ā)

− λ

[
ET∼νc(θ)

[
∂ log πθ(A

ℓ | Sℓ)

∂θ(s, a)
· ∂ log(πθ(A

t | St))

∂θ(s̄, ā)

]]
︸ ︷︷ ︸

Ht
ℓ(s,a,s̄,ā)

.

We now bound each of these three terms separately. Beforehand, recall that for any (s, a, s̄, ā), we
have

∂πθ(a | s)
∂θ(s̄, ā)

= 1s̄(s)(1ā(a)πθ(a|s)− πθ(a|s)πθ(ā|s)) . (53)
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Bounding Ft
ℓ(s, a, s̄, ā). Using (53), note that, for any (s, a, sℓ, aℓ), we have

∂ log(πθ(a
ℓ | sℓ))

∂θ(s, a)
= 1s(s

ℓ)
(
1a(a

ℓ)− πθ(a|s)
)

.

Now, consider a trajectory z = (s0, a0, . . . sT−1, aT−1). It holds that

∂ log(νc(θ; z))

∂θ(s̄, ā)
=

T−1∑
k=0

1s̄(s
k)
(
1ā(a

k)− πθ(ā|s̄)
)

.

Additionally, note that for k ≥ max(t, ℓ), we have

ET

[
1s̄(S

k)
(
1ā(A

k)− πθ(ā|s̄)
)
· ∂ log(πθ(A

ℓ | Sℓ))

∂θ(s, a)

(
r(St, At)− λ log(πθ(A

t | St))
)]

= 0 .

Combining the three previous identities, the triangle inequality and the fact that the reward is
bounded by 1 yields

∣∣Ft
ℓ(s, a, s̄, ā)

∣∣ ≤ t∑
k=0

E
[
1s̄(S

k)1s(S
ℓ)
(
1ā(A

k)1a(A
ℓ) + πθ(ā|s̄)1a(Aℓ)

)]
+

t∑
k=0

E
[
1s̄(S

k)1s(S
ℓ)
(
1ā(A

k)πθ(a | s) + πθ(a | s)πθ(ā|s̄)
)]

− λ

t∑
k=0

E
[
1s̄(S

k)1s(S
ℓ)
(
1ā(A

k)1a(A
ℓ) + πθ(ā|s̄)1a(Aℓ)

)
log πθ(A

t | St)
]

− λ

t∑
k=0

E
[
1s̄(S

k)1s(S
ℓ)
(
1ā(A

k)πθ(a | s) + πθ(ā|s̄)πθ(a | s)
)
log πθ(A

t | St)
]

.

Bounding Gt
ℓ(s, a, s̄, ā). Consider a trajectory z = (s0, a0, . . . sT−1, aT−1). It holds that

∂ log(πθ(a
ℓ | sℓ))

∂θ(s, a)
= 1s(s

ℓ)
(
1a(a

ℓ)− πθ(a|s)
)

.

Next, deriving with respect to θ(s̄, ā) yields

∂2 log πθ(a
ℓ | sℓ)

∂θ(s, a)∂θ(s̄, ā)
= −1s̄(s

ℓ)1s̄(s) [1a(ā)πθ(a|s)− πθ(a|s)πθ(ā|s̄)] .

Combining the previous equality, the triangle inequality, and using that the reward is bounded by 1
yields ∣∣Gt

ℓ(s, a, s̄, ā)
∣∣ ≤ 1s̄(s)1ā(a)E[1s̄(Sℓ)]πθ(a | s) + 1s̄(s)E[1s̄(Sℓ)]πθ(a | s)πθ(ā | s̄)
− λ1s̄(s)1ā(a)E[1s̄(Sℓ) log πθ(A

t | St)]πθ(a | s)
− λ1s̄(s)E[1s̄(Sℓ) log πθ(A

t | St)]πθ(a | s)πθ(ā | s̄) .

Bounding Ht
ℓ(s, a, s̄, ā). Applying the triangle inequality yields

|Ht
ℓ(s, a, s̄, ā)| = λ

∣∣ET

[
1s(S

ℓ)
(
1a(A

ℓ)− πθ(a | s)
)
1s̄(S

t)
(
1ā(A

t)− πθ(ā | s̄)
)]∣∣

≤ λET

[
1s(S

ℓ)1s̄(S
t)
(
1a(A

ℓ)1ā(A
t) + 1a(A

ℓ)πθ(ā | s̄)
)]

+ λET

[
1s(S

ℓ)1s̄(S
t)
(
πθ(a | s)1ā(At) + πθ(a | s)πθ(ā | s̄)

)]
.

Denote by gr,c(θ, s, a) the coefficient at coordinate (s, a) of gr,c(θ). Applying the triangle inequality
yields ∣∣∣∣∂gsm,c(θ, s, a)

∂θ(s̄, ā)

∣∣∣∣ ≤ T−1∑
t=0

γt
t∑

ℓ=0

[∣∣Ft
ℓ(s, a, s̄, ā)

∣∣+ ∣∣Gt
ℓ(s, a, s̄, ā)

∣∣+ ∣∣Ht
ℓ(s, a, s̄, ā)

∣∣]
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Using that for any s′ ∈ S,
∑

s∈S 1s(s
′) = 1, and that for any a′ ∈ A,

∑
a∈A 1s(a

′) = 1 gives

∑
s,a,s̄,ā

∣∣∣∣∂gsm,c(θ, s, a)

∂θ(s̄, ā)

∣∣∣∣ ≤ T−1∑
t=0

γt
t∑

ℓ=0

[
2t+ 2 + 4λ− (2λ+ 2tλ)ET

[
log πθ(A

t | St)
]]

Now using that for any x ∈ [0, 1[,
∑∞

k=0 k
2xk ≤ 2/(1 − x)3,

∑∞
k=0 kx

k ≤ 1/(1 − x)2, and that
−ET [log πθ(A

t | St)] ≤ log(|A|) yields∥∥∂gsm,c

∂θ

∥∥
2
≤
∥∥∂gsm,c

∂θ

∥∥
1
≤ 8 + λ(4 + 8 log(|A|)))

(1− γ)3
,

which concludes the proof.

Lemma E.3. For any c ∈ [M ], Jr,c and Jr are L2,r := (8 + λ(4 + 8 log(|A|))/(1− γ)3-smooth.

Proof. Follows from (Mei et al., 2020, Lemma 14) and the properties of averaging of smooth func-
tions.

Lemma E.4. For all c ∈ [M ] and θ ∈ R|S|×|A|, it holds

∥∇Jr,c(θ)∥2 ≤ L1,r , where L1,r :=
1 + λ log(|A|)

(1− γ)2
.

Proof. By norm comparisons, and Lemma E.1, it holds that

∥Jr,c(θ)∥2 ≤ ∥Jr,c(θ)∥1 =
1

1− γ

∑
s,a

dρ,πθ
c (s)πθ(a|s)|Ãπθ

c (s, a)| .

Now, using that for any (s, a) ∈ S ×A, we have |Ãπθ
c (s, a)| ≤ (1 + λ log(|A|))/(1− γ) yields

∥Jr,c(θ)∥2 ≤ ∥Jr,c(θ)∥1 ≤ 1 + λ log(|A|)
(1− γ)2

∑
s,a

dρ,πθ
c (s)πθ(a|s) =

1 + λ log(|A|)
(1− γ)2

.

which concludes the proof.

Lemma E.5. The spectral norm of the third derivative tensor of Jr,c is bounded by L3,r := (480 +

832λ log |A|) · (1− γ)−4, i.e., for any u, v, w ∈ R|S|×|A| it holds

|d3Jr,c(θ)[u, v, w]| = |∇3Jr,c(θ)u⊗ v ⊗ w| ≤ 480 + 832λ log |A|
(1− γ)4

∥u∥2∥v∥2∥w∥2 .

Proof. By Lemma G.9 we have for any u, v, w ∈ R|S|×|A|

∥d3Ṽ πθ
c [u, v, w]∥∞ ≤ 480 + 832λ log |A|

(1− γ)4
∥u∥2∥v∥2∥w∥2 .

Next, we notice that
d3Jr,c(θ)[u, v, w] = ρ⊤d3V πθ

c [u, v, w] ,

thus

|d3Jr,c(θ)[u, v, w]| ≤
480 + 832λ log |A|

(1− γ)4
∥u∥2∥v∥2∥w∥2 .

Lemma E.6. Let c ∈ [M ] and θ ∈ R|S|×|A|. It holds that

∥∇Jr(θ)−∇Jr,c(θ)∥22 ≤ ζ2r , where ζ2r :=
38(1 + λ log(|A|))2ε2P

(1− γ)6
.
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Proof. Fix c ∈ [M ] and θ ∈ R|S|×|A|. Using Lemma E.1, we have∣∣∣∣ ∂Jr(θ)∂θ(s, a)
− ∂Jr,c(θ)

∂θ(s, a)

∣∣∣∣ ≤ 1

M

1

1− γ

M∑
k=1

πθ(a|s)
∣∣∣dρ,πθ

k (s)Ãπθ

k (s, a)− dρ,πθ
c (s)Ãπθ

c (s, a)
∣∣∣

≤ 1

M

πθ(a|s)
1− γ

M∑
k=1

|dρ,πθ

k (s)− dρ,πθ
c (s)|

∣∣∣Ãπθ

k (s, a)
∣∣∣︸ ︷︷ ︸

(X)

+
∣∣∣Ãπθ

k (s, a)− Ãπθ
c (s, a)

∣∣∣︸ ︷︷ ︸
(Y)

dρ,πθ
c (s) .

We bound each of (X) and (Y) separately.

Bounding (X). First note that we have

0 ≤ Ṽ πθ
c (s) ≤ 1 + λ log(|A|)

1− γ
, (54)

where Ṽ πθ
c (s) is defined in (49). Combining the previous inequality and applying the triangle in-

equality yields

(X) =

∣∣∣∣∣r(s, a) + γ
∑
s′∈S

Pk(s
′|s, a)Ṽk,πθ

(s′)− λ log(πθ(a|s))− Ṽk,πθ
(s)

∣∣∣∣∣
≤ 2 + 2λ log(|A|)

1− γ
+ λ| log(πθ(a|s))| .

Bounding (Y). Using the triangle inequality, we get

(Y) =

∣∣∣∣∣γ ∑
s′∈S

Pk(s
′|s, a)Ṽ πθ

k (s′)− γ
∑
s′∈S

Pc(s
′|s, a)Ṽ πθ

c (s′) + Ṽ πθ
c (s′)− Ṽ πθ

k (s′)

∣∣∣∣∣
≤ γ

∑
s′∈S

Pk(s
′|s, a)

∣∣∣Ṽ πθ

k (s′)− Ṽ πθ
c (s′)

∣∣∣+ γ
∑
s′∈S

|Pk(s
′|s, a)− Pc(s

′|s, a)| Ṽ πθ
c (s′)

+
∣∣∣Ṽ πθ

k (s)− Ṽ πθ
c (s)

∣∣∣ .

Using A-1 and (54), we obtain

(Y) ≤ γ
∑
s′∈S

Pk(s
′|s, a)

∣∣∣Ṽ πθ

k (s′)− Ṽ πθ
c (s′)

∣∣∣+ (1 + λ log(|A|)) εP
1− γ

+
∣∣∣Ṽ πθ

k (s)− Ṽ πθ
c (s)

∣∣∣
Using (49), note that we have∣∣∣Ṽ πθ

k (s)− Ṽ πθ
c (s)

∣∣∣ ≤ |V πθ

k (s)− V πθ
c (s)|+ λ |Hs

k(θ)−Hs
c (θ)| .

The bound on the first term of the previous bound is provided by Lemma G.5. For the second term,
we have

λ |Hs
k(θ)−Hs

c (θ)| ≤
λ

1− γ

∑
s0∈S

∑
a∈A

∣∣∣ds,θ
k (s0)− ds,θ

c (s0)
∣∣∣ |πθ(a|s0) log(πθ(a|s0))|

≤ λ log(|A|)
1− γ

∑
s0∈S

∣∣∣ds,θ
k (s0)− ds,θ

c (s0)
∣∣∣ ,

where in the last inequality we used −∑a∈A πθ(a|s) log(πθ(a|s)) ≤ log(|A|). Finally plugging in
the bound of Lemma G.6 yields

λ |Hs
k(θ)−Hs

c (θ)| ≤
λ log(|A|)εP
(1− γ)2

.

Thus, we get the following bound on (Y)

(Y) ≤ 3 · (1 + λ log(|A|))εP
(1− γ)2

.
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Combining the bounds on (X) and (Y) yields∣∣∣∣ ∂Jr(θ)∂θ(s, a)
− ∂Jr,c(θ)

∂θ(s, a)

∣∣∣∣
≤ 1

M

M∑
k=1

[
2(1 + λ log(|A|))

1− γ
+ λ| log(π(a|s))|

] ∣∣∣dρ,θ
k (s)− dρ,θ

c (s)
∣∣∣ πθ(a|s)

1− γ

+
3(1 + λ log(|A|))εP

(1− γ)2
· d

ρ,θ
c (s)πθ(a|s)

1− γ

Thus, we get by Young’s inequality

∥∇Jr(θ)−∇Jr,c(θ)∥22

=
∑

(s,a)∈S×A

∣∣∣∣ ∂Jr(θ)∂θ(s, a)
− ∂Jr,c(θ)

∂θ(s, a)

∣∣∣∣2

≤
∑

(s,a)∈S×A

2 ·
(

1

M

M∑
k=1

[
2(1 + λ log(|A|))

1− γ
+ λ| log(π(a|s))|

] ∣∣∣dρ,θ
k (s)− dρ,θ

c (s)
∣∣∣ πθ(a|s)

1− γ

)2

+
∑

(s,a)∈S×A

2 ·
(
3(1 + λ log(|A|))εP

(1− γ)2
· d

ρ,θ
c (s)πθ(a|s)

1− γ

)2

.

Now applying Jensen’s inequality yields

∥∇Jr(θ)−∇Jr,c(θ)∥22

≤ 2

M

∑
(s,a)∈S×A

M∑
c=1

[
2(1 + λ log(|A|))

1− γ
+ λ| log(π(a|s))|

]2 ∣∣∣dρ,θ
k (s)− dρ,θ

c (s)
∣∣∣2 πθ(a|s)2

(1− γ)2

+
2

M

∑
(s,a)∈S×A

M∑
k=1

9(1 + λ log(|A|))2ε2P
(1− γ)6

· dρ,θ
c (s)2πθ(a|s)2

≤ 1

M

∑
(s,a)∈S×A

M∑
c=1

16(1 + λ log(|A|))2
(1− γ)2

∣∣∣dρ,θ
k (s)− dρ,θ

c (s)
∣∣∣2 πθ(a|s)2

(1− γ)2

+
1

M

∑
(s,a)∈S×A

M∑
c=1

4λ2| log(π(a|s))|2
∣∣∣dρ,θ

k (s)− dρ,θ
c (s)

∣∣∣2 πθ(a|s)2
(1− γ)2

+
1

M

∑
(s,a)∈S×A

M∑
k=1

18(1 + λ log(|A|))2ε2P
(1− γ)6

· dρ,θ
c (s)2πθ(a|s)2 ,

For the first term, using that πθ(a|s) ≤ 1, |dρ,θ
k (s) − dρ,θ

c (s)| ≤ εP/(1 − γ), for the second term
using that | log(πθ(a|s))|πθ(a|s) ≤ 1, |dρ,θ

k (s) − dρ,θ
c (s)| ≤ εP/(1 − γ), and for the third term

applying that πθ(a|s)dρ,θ
c (s) ≤ 1 gives

∥∇Jr(θ)−∇Jr,c(θ)∥22 ≤ 1

M

∑
(s,a)∈S×A

M∑
c=1

16(1 + λ log(|A|))2εP
(1− γ)3

∣∣∣dρ,θ
k (s)− dρ,θ

c (s)
∣∣∣ πθ(a|s)
(1− γ)2

+
1

M

∑
(s,a)∈S×A

M∑
c=1

4λ2| log(π(a|s))|
∣∣∣dρ,θ

k (s)− dρ,θ
c (s)

∣∣∣ πθ(a|s)εP
(1− γ)3

+
1

M

∑
(s,a)∈S×A

M∑
k=1

18(1 + λ log(|A|))2ε2P
(1− γ)6

· dρ,θ
c (s)πθ(a|s) ,
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Finally, for the first term using that
∑

a∈A | log(πθ(a|s))|πθ(a|s) ≤ log(|A|), and using Lemma G.6
for both the first and second term yields

∥∇Jr(θ)−∇Jr,c(θ)∥22 ≤ 38(1 + λ log(|A|))2ε2P
(1− γ)6

,

which concludes the proof.

The following lemma bounds the bias and the variance of this stochastic gradient.
Lemma E.7 (Lemma 6 from Ding et al. (2025)). Consider the stochastic gradient defined in (48).
We have

∥gr,c(θ)−∇Jr,c(θ)∥2 ≤ βr :=
2(1 + λ log(|A|))γT

1− γ

(
T +

1

1− γ

)
,

Var(gZc
r,c) ≤ σ2

r,2 :=
12 + 24λ2(log(|A|))2

B(1− γ)4
.

Finally, we show that the fourth-order moment of our biased estimator is bounded.

Lemma E.8. For any c ∈ [M ], for any θ ∈ R|S|×|A|, the fourth central moment of gZc
r,c is bounded,

that is

EZc∼νc(θ)

[
∥gZc

r,c(θ)− gr,c(θ)∥42
]
≤ σ4

r,4 :=
1120 + 4480λ4 log(|A|)4

B2(1− γ)8
. (55)

Proof. Fix c ∈ [M ], θ ∈ R|S|×|A| and an observation Zc = (Zc,1, . . . Zc,B) ∼ νc(θ)
⊗B . For more

readability of the proof, we define for any z = (st, at)T−1
t=0 ∈ (S ×A)T :

u(z)
∆
=

T−1∑
t=0

γt

(
t∑

ℓ=0

∇ log πθ(a
t | st)

)[
r(st, at)− λ log(πθ(a

t | st)
]

.

Importantly, note that

g
Zc
r,c(θ) =

1

B

B∑
b=1

u(Zc,b) , and gr,c(θ) = ū ,

where we define ū = EZc,b∼νc(θ)[u(Zc,b)]. Using this decomposition, we can bound the fourth order

of gZc
r,c(θ) by the fourth central moment of u(Zc,b). Indeed, expanding the norm to the fourth power

yields

EZc∼νc(θ)⊗B

[
∥gZc

r,c(θ)− gr,c(θ)∥42
]
= EZc

∥∥∥∥∥ 1

B

B∑
b=1

[u(Zc,b)− ū]

∥∥∥∥∥
4

2


=

1

B4

B∑
b1=1

B∑
b2=1

B∑
b3=1

B∑
b4=1

EZc
[⟨u(Zc,b1)− ū,u(Zc,b2)− ū⟩⟨u(Zc,b3)− ū,u(Zc,b4)− ū⟩]︸ ︷︷ ︸

U(b1,b2,b3,b4)

.

Note that by independence of the trajectories, U(b1, b2, b3, b4) is non-zero if and only if all of the
indices are equal or there are two pairs of equal indices. In this case, as the trajectories are identically
distributed, U(b1, b2, b3, b4) is respectively equal to E

[
∥u(Zc,1)− ū∥42

]
and E

[
∥u(Zc,1)− ū∥2

]2
.

There are exactly B combinations where all indices are equal, and

B(B − 1)

2
· 4 · 3

2

combinations corresponding to the two distinct pairs of equal indices case. Combining these, we
arrive at the following identity:

EZc

[
∥gZc

r,c(θ)− gr,c(θ)∥42
]
=

1

B3

E [∥u(Zc,1)− ū∥42
]︸ ︷︷ ︸

(M)

+3(B − 1)E
[
∥u(Zc,1)− ū∥2

]2 . (56)
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We now decompose u(Zc,1) into two components, one that comes from the rewards of the MDP and
a second associated with the regularization. Precisely, we define

ur(Zc,1)
∆
=

T−1∑
t=0

γt

(
t∑

ℓ=0

∇ log πθ(A
ℓ
c,1 | Sℓ

c,1)

)
r(St

c,1, A
t
c,1) ,

uλ(Zc,1)
∆
= −λ

T−1∑
t=0

γt

(
t∑

ℓ=0

∇ log πθ(A
ℓ
c,1 | Sℓ

c,1)

)
log(πθ(A

t
c,1, S

t
c,1)) .

Additionally, define ur and uλ respectively as the expectations of ur(Zc,1) and uλ(Zc,1). Impor-
tantly, note that

u(Zc,1) = ur(Zc,1) + uλ(Zc,1) , and ū = ur + uλ .

Thus, using the triangle inequality, we have

(M) ≤ EZc∼νc(θ)

[
(∥ur(Zc,1)− ur∥2 + ∥uλ(Zc,1)− uλ∥2)4

]
≤ EZc∼νc(θ)

[
(2max(∥ur(Zc,1)− ur∥2, ∥uλ(Zc,1)− uλ∥2))4

]
≤ 16EZc

[
∥ur(Zc,1)− ur∥42

]︸ ︷︷ ︸
(M1)

+16EZc

[
∥uλ(Zc,1)− uλ∥42

]︸ ︷︷ ︸
(M2)

Subsequently, we bound each of these two terms separately.

Bounding (M1). Applying the triangle inequality, combined with Jensen’s inequality, and using
the fact that for any (s, a) ∈ S ×A, we have ∥∇ log(πθ(a | s))∥2 ≤ 2 (see, e.g., proof of Lemma 7
in Ding et al. (2025)), gives

(M1) = EZc

[
∥ur(Zc,1)− ur∥42

]
≤ EZc

[
∥ur(Zc,1)∥42

]
≤
(

T−1∑
t=0

2tγt

)4

≤ 16

(1− γ)8
,

where in the last inequality, we used that for any x ∈ [0, 1[,
∑∞

k=0 kx
k ≤ 1/(1− x)2.

Bounding (M2). Applying the triangle inequality combined with Jensen’s inequality yields

(M2) ≤ EZc

[
∥uλ(Zc,1)∥42

]
= λ4EZc

[
∥
T−1∑
t=0

γt

(
t∑

ℓ=0

∇ log πθ(A
ℓ
c,1 | Sℓ

c,1)

)
log(πθ(A

t
c,1, S

t
c,1))∥42

]

≤ λ4EZc

(T−1∑
t=0

γt
t∑

ℓ=0

∥∇ log πθ(A
ℓ
c,1 | Sℓ

c,1)∥2| log(πθ(A
t
c,1, S

t
c,1))|

)4
 ,

where in the last inequality, we used the triangle inequality. Now, using that ∥∇ log(πθ(a | s))∥2 ≤
2, we obtain

(M2) ≤ λ4EZc

(T−1∑
t=0

2tγt| log(πθ(A
t
c,1, S

t
c,1))|

)4
 .

Next, applying Cauchy-Schwarz inequality gives

(M2) ≤ λ4EZc

(T−1∑
t=0

2tγt/2γt/2| log(πθ(A
t
c,1, S

t
c,1))|

)4


≤ λ4

(
T−1∑
t=0

4t2γt

)2

EZc

(T−1∑
t=0

γt| log(πθ(A
t
c,1, S

t
c,1))|2

)2
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s0 s1 s2

(a1, qc, 0)

(a1, 1− qc, 0)

(a0, pc, 0)

(a0, 1− pc, 0)

(a1, 1, 1)

(a0, 1, 1)

(a1, 1, 0)

(a0, 1, 0)

agent c

Figure 5: FRL task with no optimal local deterministic policy. The triplet means (action, probability,
reward) , γ = 0.999, and λ = 1. If the action is not specified, it means that all the actions give the
same reward and lead to the same state.

≤ λ4

(
T−1∑
t=0

4t2γt

)2

EZc

 (1− γT )2

(1− γ)2

(
1− γ

1− γT

T−1∑
t=0

γt| log(πθ(A
t
c,1, S

t
c,1))|2

)2
 .

For the first sum, using that for any x ∈ [0, 1[,
∑∞

k=0 k
2xk ≤ 2/(1 − x)3, and for the second sum

using Jensen’s inequality gives

(M2) ≤ λ4 64

(1− γ)6
EZc

[
1− γT

1− γ

T−1∑
t=0

γt| log(πθ(A
t
c,1, S

t
c,1))|4

]

≤ λ4 64

(1− γ)7

T−1∑
t=0

γtEZc

[
| log(πθ(A

t
c,1 | St

c,1))|4
]

. (57)

Denote by P(A) the set of probability distributions on A. Note that for any policy. Note, that, we
have

max
π∈P(A)

−
∑
a∈A

π(a | s) log(π(a | s))4 = (log(|A|))4 . (58)

Plugging in the previous bound in (57) yields

(M2) ≤
64λ4

(1− γ)8
log(|A|)4 .

Combining the bounds on (M1) and (M2) gives the following bound on (M).

(M) ≤ 16(M1) + 16(M2) ≤
256

(1− γ)8
+

1024λ4

(1− γ)8
log(|A|)4 .

Plugging in the previous bound in (56) concludes the proof.

We first show that, in general, the objective Jr does not have Łojasiewicz structure.
Lemma E.9. There exists an FRL instance where the objective Jr admits a strict local minima.

Proof. Consider the FRL task defined in Figure 5. Define x := πθ(a1|s0). From the flow conserva-
tion constraints for occupancy measures for any agent c ∈ [M ], it holds that

dρ,θ
c (s2) = γdρ,θ

c (s1) , dρ,θ
c (s1) = γ (qcx+ (1− x)pc) d

ρ,θ
c (s1)

dρ,θ
k (s0) = (1− γ) + γ ((1− qc)x+ (1− pc)(1− x)) dρ,θ

c (s0) .

Rearranging the precedent terms yields

dρ,θ
c (s0) :=

1− γ

1− γ ((1− qc)x+ (1− pc)(1− x))
,
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Figure 6: An example that shows that FRL objective Jr does not necessarily have a Łojasiewicz
structure.

which implies

dρ,θ
c (s1) :=

γ(1− γ) (qcx+ (1− x)pc)

1− γ ((1− qc)x+ (1− pc)(1− x))
=

γ(1− γ) (pc + (qc − pc)x)

1− γ (1− pc + x(pc − qc))
.

The value of the objective function is thus

Jr,c(θ) =
λ

1− γ

[
dρ,θ
c (s0)H(x) +

dρ,θ
c (s1)

λ
+ dρ,θ

c (s1)H(πθ(a1|s1)) + dρ,θ
c (s2)H(πθ(a1|s2))

]
,

where for any y ∈ (0, 1), H(y)
∆
= −y log y − (1 − y) log(1 − y). Now, let us assume that the

policy for states s1 and s2 is uniform since it is an optimal solution given any values of pc and
qc, and in this case we have H(πθ(a1|s1)) = H(πθ(a1|s2)) = log 2. Then, let us define a value
f(x; pc, qc) = pc+(qc−pc)x, where x = σ(θ) for σ(θ) = 1

1+exp(−θ) is a sigmoid parametrization.

Thus, after plugging in a value of our occupancy measures in our MDP, we have

Jr,c(θ) =
τH(σ(θ)) + γ · f(σ(θ); pc, qc) · (1 + τ log 2 + γτ log 2)

1− γ(1− f(σ(θ); pc, qc))
.

The plot of Jr (for M = 2, p1 = 0, q1 = 1, p2 = 0.99, q2 = 0.01, γ = 0.999, and λ = 1) in
Figure 6 shows that this problem does not have a Łojasiewicz structure.

However, each agent locally satisfies a Łojasiewicz-type property
Lemma E.10 ((Equation 539) from Lemma 15 of Mei et al. (2020)). For any agent c ∈ [M ], denote
by π⋆,c

λ the unique optimal regularized policy (see e.g Nachum et al. (2017) for the proof of existence
and unicity) of this agent. It holds

∥∇Jr,c(θ)∥22 ≥ 2µλ
r,c(θ)

[
J⋆
r,c − Jr,c(θ)

]
,

where µλ
r,c(θ) is defined as

µλ
r,c(θ) =

λmins d
ρ,πθ
c (s)mins,a πθ(a|s)2
|S|(1− γ)

∥∥∥∥∥d
ρ,π⋆,c

λ
c

dρ,θ
c

∥∥∥∥∥
−1

∞

.

In case of small heterogeneity between the agents, i.e A-1, this precedent Lemma, combined with
Lemma D.6 allows us to establish that the global objective satisfies a Relaxed Łojasiewicz-type
inequality.
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Lemma E.11. Assume A-1. For any θ ∈ R|S|×|A|, it holds that

ζ2r + ∥∇Jr(θ)∥22 ≥ 2 min
c∈[M ]

µλ
r,c(θ)(J

⋆
r − Jr(θ)) .

Proof. Let θ ∈ R|S|×|A|. Using Lemma E.10 and the triangle inequality, we have for any c ∈ [M ]

min
c∈[M ]

2µλ
r,c(θ)[J

⋆
r,c − Jr,c(θ)]

≤ 2µλ
r,c(θ)[J

⋆
r,c − Jr,c(θ)] ≤ ∥∇Jr,c(θ)∥22

= ∥∇Jr,c(θ)−∇Jr(θ) +∇Jr(θ)∥22
≤ ∥∇Jr,c(θ)−∇Jr(θ)∥22 + 2⟨∇Jr,c(θ)−∇Jr(θ),∇Jr,(θ)⟩ + ∥∇Jr(θ)∥22
≤ ζr + 2⟨∇Jr,c(θ)−∇Jr(θ),∇Jr(θ)⟩ + ∥∇Jr(θ)∥22 ,

where in the last inequality we used Lemma E.6. Finally, averaging the preceding inequality over
all the agents concludes the proof.

E.2 Convergence rates, sample and communication complexities

Theorem E.12 (Convergence rates of RS-FedPG). Assume A-1 and A-2 and no projection (i.e., set
T = R|S|×|A|). Additionally, assume that there exists µλ

r ∈ (0, 1) such that, with probability 1,
infr∈N µλ

r (θ
r) ≥ µλ

r > 0. For any η > 0 such that ηHL2,r ≤ 1/74, the iterates of RS-FedPG
satisfy

J⋆
r −E[Jr(θR)] ≤

(
1− ηHµλ

r

2

)R

(J⋆
r −Jr(θ

0) +
3ηL2,rσ

2
r,2

Mµλ
r

+
ζ2r
µλ
r

+ 4
β2
r

µλ
r

+
8 · 123η4L2

3,rH(H − 1)σ4
r,4

µλ
r

.

Proof. First note that no projection is used, which implies that θ̄r+1 = θr+1. Under A-1 and A-2,all
the results of Appendix E.1 hold, satisfying thereby the assumptions of Lemma C.3. Importantly
note that if ηHL2,r ≤ 1/74 then it holds that 32η2H2L2

3,rL
2
1,r ≤ L2

2,r (as 32L2
3,rL

2
1,r ≤ 742L4

2,r by
Lemma E.3, Lemma E.4, and Lemma E.5). Applying Lemma C.3 yields

−E
[
Jr(θ

r+1)
∣∣Fr

]
≤ −Jr(θ

r)− ηH

4
∥∇Jr(θ

r)∥22 +
3η2L2,rHσ2

r,2

2M
(59)

+ 2ηHβ2
r + 8η3L2

2,rH
2(H − 1)ζ2r + 4 · 123η5L2

3,rH
2(H − 1)σ4

r,4

Adding J⋆
r , using Lemma E.11, and using the fact that ηHL2,r ≤ 1/74 to simplify the heterogeneity

terms yields

J⋆
r − E

[
Jr(θ

r+1)
∣∣Fr

]
≤ (1− ηHµλ

r

2
)(J⋆

r − Jr(θ)) +
ηH

2
ζ2r +

3η2L2,rHσ2
r,2

2M

+ 2ηHβ2
r + 4 · 123η5L2

3,rH
2(H − 1)σ4

r,4 (60)

The result follows from taking the expectation and unrolling the recursion.

Recall that

L1,r =
1 + λ log(|A|)

(1− γ)2
, L2,r =

8 + λ(4 + 8 log(|A|)
(1− γ)3

, L3,sm =
480 + 832λ log |A|

(1− γ)4
,

ζ2r =
38(1 + λ log(|A|))2ε2P

(1− γ)6
, βr =

2(1 + λ log(|A|))γTT

1− γ
+

2(1 + λ log(|A|))γT

(1− γ)2
,

σ2
r,2 =

12 + 24λ2(log(|A|))2
(1− γ)4B

, σ4
r,4 =

(1120 + 4480λ4 log(|A|)4)
(1− γ)8B2

,

which are defined respectively in Lemmas E.2 and E.4 to E.8. We obtain the following result.
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Corollary E.13 (Explicit Convergence Rate of RS-FedPG). Under the assumptions of Theo-
rem E.12, let η > 0 such that ηH ≤ 888−1(1 − γ)3(1 + λ log(|A|))−1, and T ≥ 1/(1 − γ).
Then, the iterates of RS-FedPG satisfy

J⋆
r −E[Jr(θR)] ≤

(
1− ηHµλ

r

2

)R

(J⋆
r −Jr(θ

0) +
864η(1 + λ log(|A|)3

BMµλ
r (1− γ)7

+
38(1 + λ log(|A|))2ε2P

µλ
r (1− γ)6

+
16(1 + λ log(|A|))2γ2TT 2

µλ
r (1− γ)2

+
518η4H(H − 1)(1 + λ log(|A|))6

µλ
rB

2(1− γ)16
.

Corollary E.14 (Sample and Communication Complexity of RS-FedPG). Under the assumptions
of Theorem E.12, let ϵ ≥ 190(1 + λ log(|A|))2ε2P(µλ

r )
−1(1 − γ)−6. Then, for a properly chosen

truncation horizon, a properly chosen step size and number of local updates, RS-FedPG learns an
ϵ-approximation of the optimal objective with a number of communication rounds

R ≥ 888(1 + λ log(|A|)
(1− γ)3µλ

r

log
(5(J⋆

r −Jr(θ
0))

ϵ

)
,

for a total number of samples per agent of

RHB ≥ max
(24(1 + λ log(|A|))B

µλ
r (1− γ)3

,
8640(1 + λ log(|A|))3
(µλ

r )
2ϵM(1− γ)7

,

2 · 124(1 + λ log(|A|))2
ϵ1/2(µλ

r )
3/2(1− γ)5

)
log
(5(J⋆

r −Jr(θ
0))

ϵ

)
.

Proof. First, we fix the truncation horizon T to

T ≥ (1− γ)−1 max

(
4

1− γ
, log

(
80(1 + λ log(|A|))2

ϵµλ
r (1− γ)2

))
.

Secondly, we require (i) that η ≤ L2,r ≤ 12−1(1−γ)3(1+λ log(|A|))−1, and that (ii) each variance
terms to be smaller than ϵ/5, which gives the condition on the step size

η ≤ min
( (1− γ)3

12(1 + λ log(|A|)) ,
µλ
r ϵMB(1− γ)7

4320(1 + λ log(|A|))3 ,
Bϵ1/2(µλ

r )
1/2(1− γ)5

124(1 + λ log(|A|))2
)

, (61)

where the third element of the min comes from

518η4H(H − 1)(1 + λ log(|A|))6
µλ
rB

2(1− γ)16
≤ 518η2(1 + λ log(|A|))2

8882µλ
rB

2(1− γ)10
≤ ϵ

5
.

Then, H has to satisfy ηH ≤ 888−1(1− γ)3(1 + λ log(|A|))−1. This requires

H ≤ 1

888η(1 + λ log(|A|))−1
.

Finally, we require that the number of communications is at least

R ≥ 2

ηHµλ
r

log
(5(J⋆

r −Jr(θ
0))

ϵ

)
=

888(1 + λ log(|A|)
(1− γ)3µλ

r

log
(5(J⋆

r −Jr(θ
0))

ϵ

)
.

The sample complexity follows from RHB ≥ 2B
ηµλ

r
log
(

5(J⋆
r−Jr(θ

0))
ϵ

)
and (61).

E.3 Establishing a bound on µλ
r when |A| = 2

The goal of this subsection is to show that when |A| = 2, the field ∇Jr,c presents a particular
structure (which does not hold for larger action spaces) that allows us to show the existence of a
bounded set on which projecting the global iterates of RS-FedPG provably increases the value of
the objective Jr. This property is crucial, as by projecting at every round the parameter on this
bounded set, we constrain the sequence of policies to remain uniformly away from the boundary of
the simplex, while guaranteeing that we do not degrade the value of the objective Jr. This allow us
to derive an explicit lower bound on infr∈[R] µ

λ
r (θ

r) by using Lemma E.10.
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Define B(λ) as the ℓ∞ ball of radius R(λ)
∆
= (1 + λ log(2))/(λ(1 − γ)) , and let projB(λ)(·)

denote the ℓ2-projection operator onto this ball. We also denote by B̄(λ) the complement of B(λ) in
R|S|×|A|. From now on and until the end of the subsection, unless the inverse is explicitly mentioned,
we fix the projection set T of RS-FedPG to B(λ), the initial parameter to (0) and assume that the
action space consists of exactly two actions, i.e., |A| = 2. We denote these actions by a1 and a2.

To prove that projecting on B(λ) increases the objective value, we first prove a property on the
trajectory of the iterates of RS-FedPG. Define the vector (1) ∈ R|A| as the all-ones vector and
define the set

P
∆
= {θ ∈ R|S|×|A|,∀s ∈ S, ⟨θ(s, ·), (1)⟩ = 0} . (62)

We begin by proving that the iterates of the RS-FedPG algorithm almost surely remain within P .

Lemma E.15. Let θ ∈ P and define the projected parameter θ′ = projB(λ)(θ). It holds that

θ′(s, ·) = κ(s)θ(s, ·) , where κ(s) := min

(
R(λ)

|θ(s, a1)|
, 1

)
.

In particular, we have θ′ ∈ P .

Proof. Fix s ∈ S. We distinguish two cases depending on the value of θ(s, a1).

Case 1. If |θ(s, a1)| ≤ R(λ), then by the assumption θ(s, a1) + θ(s, a2) = 0, it follows that
|θ(s, a2)| = |θ(s, a1)| ≤ R(λ). Thus, no truncation occurs under the ℓ∞ projection, and we have
θ′(s, ·) = θ(s, ·). Therefore, θ′(s, ·) = κ(s)θ(s, ·) with κ(s) = 1.

Case 2. Suppose now that |θ(s, a1)| > R(λ). Without loss of generality, assume θ(s, a1) > R(λ)
(the case θ(s, a1) < −R(λ) is symmetric). Since θ(s, a2) = −θ(s, a1), it follows that θ(s, a2) <
−R(λ). The projection onto the ℓ∞ ball then truncates both components to the bounds ±R(λ),
yielding

θ′(s, a1) = R(λ) , θ′(s, a2) = −R(λ) .

This implies

θ′(s, ·) = R(λ)

|θ(s, a1)|
θ(s, ·) ,

so again we have θ′(s, ·) = κ(s)θ(s, ·) with κ(s) = R(λ)
|θ(s,a1)| < 1.

In both cases, the projection preserves the antisymmetry of the original vector: θ′(s, a1) +
θ′(s, a2) = 0. Equivalently, θ′(s, ·) = κ(s)θ(s), as desired.

Lemma E.16. Consider the iterates (θr,hc ) generated by RS-FedPG. For all r ∈ [R], we have
θr ∈ P .

Proof. First, observe that P is convex and thus stable by convex combinations. Thereby, if for a
given r ∈ [R], it holds that for all c ∈ [M ], we have that θr,Hc ∈ P then θ̄r+1 ∈ P and thereby by
Lemma E.15, we have θr+1 = projB(λ)(θ) ∈ P .

In particular, if we prove that θr ∈ P implies that θr,Hc ∈ P , then an immediate recursion on r
would prove the desired result. Subsequently, we prove by induction that if for some r ∈ [R], we
have θr ∈ P then for any h ∈ [H], and for any c ∈ [M ] we have θr,hc ∈ P . Let us fix r ∈ [R] such
that θr ∈ P .

Base case: As we assume θr ∈ P , then by definition it holds for all c ∈ [M ] that θr,0c ∈ P .

Recursion: Let h ∈ [H − 1] such that for all c ∈ [M ], θr,hc ∈ P . Fix c ∈ [M ], s ∈ S, and recall the
definition of the estimator of the gradient (48):

gZc
r,c :=

1

B

B∑
b=1

T−1∑
t=0

γt

(
t∑

ℓ=0

∇ log πθ(A
ℓ
c,b | Sℓ

c,b)

)[
r(St

c,b, A
t
c,b)− λ log(πθ(A

t
c,b, S

t
c,b))

]
.
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Importantly, using that for any (s′, a′) ∈ S ×A, we have
∑

a∈A
∂ log(πθ(a

′|s′))
∂θ(s,a) = 0, we get∑

a∈A
gZc
r,c(s, a) (63)

=
1

B

B∑
b=1

T−1∑
t=0

γt

(
t∑

ℓ=0

∑
a∈A

∂ log πθ(A
ℓ
c,b | Sℓ

c,b)

∂θ(s, a)

)[
r(St

c,b, A
t
c,b)− λ log(πθ(A

t
c,b, S

t
c,b))

]
= 0.

Combining the previous result and the induction hypothesis implies ⟨θr,h+1
c (s, ·), (1)⟩ = 0 validat-

ing thereby the recursion.

Next, we establish for any c ∈ [M ] that the field ∇Jr,c satisfies a radiality-type property in B̄(λ)∩P .

Lemma E.17. For any c ∈ [M ], the gradient field is radial in B̄(λ)∩ P , i.e for any θ ∈ B̄(λ)∩ P ,
for any s ∈ S such that |θ(s, a1)| > R(λ), we have

⟨θ(s, ·), ∂Jr,c(θ)
∂θ(s, ·) ⟩ ≤ 0 .

Proof. According to the definition of Jr,c(θ), we have

Jr,c(θ) = Es∼ρ

[∑
a∈A

πθ(a|s)
[
Q̃θ

c (s, a)− λ log(πθ(a|s))
]]

.

Taking the derivative w.r.t θ,

∂Jr,c(θ)

∂θ
= Es∼ρ

[∑
a∈A

∂πθ(a|s)
∂θ

[
Q̃θ

c (s, a)− λ log(πθ(a|s))
]]

+ Es∼ρ

[∑
a∈A

πθ(a|s)
[
∂Q̃θ

c (s, a)

∂θ
− λ

1

πθ(a|s)
∂πθ(a|s)

∂θ

]]

= Es∼ρ

[∑
a∈A

∂πθ(a|s)
∂θ

[
Q̃θ

c (s, a)− λ log(πθ(a|s))
]]

+ Es∼ρ

[∑
a∈A

πθ(a|s)
∂Q̃θ

c (s, a)

∂θ

]
,

where in the last equality we used that πθ(·|s) lies on the simplex. Now using (50), we obtain

∂Jr,c(θ)

∂θ
= Es∼ρ

[∑
a∈A

∂πθ(a|s)
∂θ

[
Q̃θ

c (s, a)− λ log(πθ(a|s))
]]

+ γEs∼ρ

[∑
a∈A

πθ(a|s)
∑
s′∈S

Pc(s
′|s, a)∂Ṽ

θ
c (s)

∂θ

]
.

Unrolling the recursion yields

∂Jr,c(θ)

∂θ
=

1

1− γ

∑
s∈S

dρ,θ
c (s)

∑
a∈A

∂πθ(a|s)
∂θ

[
Q̃θ

c (s, a)− λ log(πθ(a|s))
]

. (64)

Now fix s ∈ S. It holds that

∂πθ(a1|s)
∂θ(s, a1)

= πθ(a1|s)πθ(a2|s) ,
∂πθ(a2|s1)
∂θ(s, a1)

= −πθ(a1|s)πθ(a2|s) ,

∂πθ(a1|s)
∂θ(s, a2)

= −πθ(a1|s)πθ(a2|s) ,
∂πθ(a2|s1)
∂θ(s, a1)

= πθ(a1|s)πθ(a2|s) .

Note that for s′ ̸= s and a, a′ ∈ A, we have ∂πθ(a|s)
∂θ(s′,a′) = 0. Thus, (64) simplifies to

∂Jr,c(θ)

∂θ(s, a1)
=

1

1− γ
· dρ,θ

c (s) ·
[
∂πθ(a1|s)
∂θ(s, a1)

·
[
Q̃θ

c (s, a1)− λ log(πθ(a1|s))
]]
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+
1

1− γ
· dρ,θ

c (s) ·
[
∂πθ(a2|s)
∂θ(s, a1)

·
[
Q̃θ

c (s, a2)− λ log(πθ(a2|s))
]]

=
1

1− γ
dρ,θ
c (s)πθ(a1|s)πθ(a2|s)

[
Q̃θ

c (s, a1)− Q̃θ
c (s, a2)− λ(θ(a1|s)− θ(a2|s))

]
.

Similarly, computing the derivative with respect to θ(s, a2) yields

∂Jr,c(θ)

∂θ(s, a2)
=

1

1− γ
dρ,θ
c (s)πθ(a2|s)πθ(a1|s)

[
Q̃θ

c (s, a2)− Q̃θ
c (s, a1)− λ(θ(a2|s)− θ(a1|s))

]
.

Now using that θ(s, a1) + θ(s, a2) = 0, we get

⟨θ(s, ·), ∂Jr,c(θ)
∂θ(s, ·) ⟩ =

1

1− γ
dρ,θ
c (s)πθ(a2|s)πθ(a1|s)

[
2θ(s, a1)

(
Q̃θ

c (s, a2)− Q̃θ
c (s, a1)

)]
− 2λ

1

1− γ
dρ,θ
c (s)πθ(a2|s)πθ(a1|s)θ(s, a1)2 .

Finally using that for any (s, a, c) ∈ S×A× [M ], Q̃θ
c (s, a) ≤ 1+λ log(|A|)

1−γ concludes the proof.

Remark E.18. The precedent property is not satisfied when the number of actions is strictly larger
than 2.

Proof. In what follows, we consider the FRL instance where all the agents share the same following
MDP. This MDP has four states S = {s0, s1, s2, s3} and three actions A = {a1, a2, a3}. If the
agent is at state s0 and picks action ai, then he moves deterministically to the state si. In any other
state, the agent stays in the same state, whatever action he takes. Additionally, we set r(s0, a1) = 1
and zero elsewhere. We set the initial distribution to be the uniform distribution on the state space.

Fix s ∈ S. It holds that

∂πθ(a1|s)
∂θ(s, a1)

= πθ(a1|s) (πθ(a2|s) + πθ(a3|s)) ,
∂πθ(a2|s1)
∂θ(s, a1)

= −πθ(a1|s)πθ(a2|s) ,

∂πθ(a3|s)
∂θ(s, a1)

= −πθ(a1|s)πθ(a3|s) ,

with similar expressions for the derivative with respect to θ(s, a2) and θ(s, a3). Starting from (64)
and rearranging the terms, we get

∂Jr,c(θ)

∂θ(s, a1)
=

1

1− γ
dρ,θ
c (s)

∑
a∈A

∂πθ(a|s)
∂θ(s, a1)

[
Q̃θ

c (s, a)− λ log(πθ(a|s))
]

=
1

1− γ
dρ,θ
c (s)πθ(a1|s)πθ(a2|s)

[
Q̃θ

c (s, a1)− Q̃θ
c (s, a2)− λ (θ(s, a1)− θ(s, a2))

]
+

1

1− γ
dρ,θ
c (s)πθ(a1|s)πθ(a3|s)

[
Q̃θ

c (s, a1)− Q̃θ
c (s, a3)− λ (θ(s, a1)− θ(s, a3))

]
,

with similar expressions for the partial derivative of Jr,c(θ) with respect to θ(s, a2) and θ(s, a3).
Thus, we get

(1− γ)⟨θ(s, ·), ∂Jr,c(θ)
∂θ(s, ·) ⟩

= dρ,θ
c (s)πθ(a1|s)πθ(a2|s)

[
(Q̃θ

c (s, a1)− Q̃θ
c (s, a2))θ(s, a1)− λθ(s, a1) (θ(s, a1)− θ(s, a2))

]
+ dρ,θ

c (s)πθ(a1|s)πθ(a3|s)
[
(Q̃θ

c (s, a1)− Q̃θ
c (s, a3))θ(s, a1)− λθ(s, a1) (θ(s, a1)− θ(s, a3))

]
+ dρ,θ

c (s)πθ(a2|s)πθ(a1|s)
[
(Q̃θ

c (s, a2)− Q̃θ
c (s, a1))θ(s, a2)− λθ(s, a2) (θ(s, a2)− θ(s, a1))

]
+ dρ,θ

c (s)πθ(a2|s)πθ(a3|s)
[
(Q̃θ

c (s, a2)− Q̃θ
c (s, a3))θ(s, a2)− λθ(s, a2) (θ(s, a2)− θ(s, a3))

]
+ dρ,θ

c (s)πθ(a3|s)πθ(a1|s)
[
(Q̃θ

c (s, a3)− Q̃θ
c (s, a1))θ(s, a3)− λθ(s, a3) (θ(s, a3)− θ(s, a1))

]
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+ dρ,θ
c (s)πθ(a3|s)πθ(a2|s)

[
(Q̃θ

c (s, a3)− Q̃θ
c (s, a2))θ(s, a3)− λθ(s, a3) (θ(s, a3)− θ(s, a2))

]
.

Rearranging the terms gives

(1− γ)⟨θ(s, ·), ∂Jr,c(θ)
∂θ(s, ·) ⟩ = dρ,θ

c (s)πθ(a1|s)πθ(a2|s)(Q̃θ
c (s, a1)− Q̃θ

c (s, a2))(θ(s, a1)− θ(s, a2))

− λdρ,θ
c (s)πθ(a1|s)πθ(a2|s) (θ(s, a1)− θ(s, a2))

2

+ dρ,θ
c (s)πθ(a1|s)πθ(a3|s)(Q̃θ

c (s, a1)− Q̃θ
c (s, a3))(θ(s, a1)− θ(s, a3))

− λdρ,θ
c (s)πθ(a1|s)πθ(a3|s) (θ(s, a1)− θ(s, a3))

2

+ dρ,θ
c (s)πθ(a2|s)πθ(a3|s)(Q̃θ

c (s, a2)− Q̃θ
c (s, a3))(θ(s, a2)− θ(s, a3))

− λdρ,θ
c (s)πθ(a2|s)πθ(a3|s) (θ(s, a2)− θ(s, a3))

2
.

For x > 0, define θx ∈ R|S|×|A| such that for any i ∈ {0, 1, 2, 3}, we have: θx(si, a1) = x +
1/x, θx(si, a2) = x, and θx(si, a3) = −2x− 1/x. Note that there exists b : R → R and b : R → R
such that Q̃θx

c (s0, a1) = 1 + b(x), Q̃θx
c (s0, a2) = c(x), and limx→∞ b(x) = limx→∞ c(x) = 0.

In this case, all the terms that contain πθx(a3|s0) are negligible for sufficiently large x. Thereby we
have

(1− γ)⟨θx(s0, ·),
∂Jr,c(θx)

∂θ(s0, ·)
⟩ ∼x→∞ dρ,θx

c (s0)πθx(a1|s0)πθx(a2|s0)
[
1 + b(x)− c(x)− λ/x

x

]
.

As the two equivalents must be of similar signs for sufficiently large x then we can conclude that
there does not exist a ball on which the field is systematically radial outside of it.

By combining Lemma E.16 and Lemma E.17, we show that, for any c ∈ [M ], projecting the iterates
of RS-FedPG onto B(λ) always results in increasing the objective Jr,c.
Lemma E.19. Let θ ∈ P and define θ′ = projB(λ)(θ). It holds that

Jr,c(θ
′) ≥ Jr,c(θ) .

Proof. We distinguish two cases:

Case 1. If θ ∈ B(λ), then θ′ = θ and thus the result follows.

Case 2. Now, we consider the case where θ ∈ B̄(λ). In this case, there exists s ∈ S such
that |θ(s, a1)| ≥ R(λ). Using Lemma E.15, we have θ′(s, ·) = κ(s)θ(s, ·) where κ(s) =
R(λ)/|θ(s, a1)|. Now, define the function

g : [0, 1] → R
t 7→ Jr,c((1− t)θ + tθ′) .

We have g′(t) = ⟨θ′ − θ,∇Jr,c((1− t)θ + tθ′)⟩. Now using Taylor’s expansion with integral rest,
we get

Jr,c(θ
′) = Jr,c(θ) +

∫ 1

t=0

g′(t)dt = Jr,c(θ) +

∫ 1

t=0

⟨θ′ − θ,∇Jr,c((1− t)θ + tθ′)⟩dt .

Defining S+ as the set of states where |θ(s, a1)| ≥ R(λ), we get by decomposing the scalar product

Jr,c(θ
′) = Jr,c(θ) +

∑
s∈S+

∫ 1

t=0

⟨θ′(s, ·)− θ(s, ·), ∂Jr,c((1− t)θ + tθ′)

∂θ(s, ·) ⟩dt

= Jr,(θ) +
∑
s∈S+

∫ 1

t=0

κ(s)− 1

1− t+ tκ(s)
⟨(1− t)θ(s, ·) + tθ′(s, ·)), ∂Jr,c((1− t)θ + tθ′)

∂θ(s, ·) ⟩dt

As for any t ∈ (0, 1), we have (1 − t)θ + tθ′ ∈ P ∩ B̄(λ), for any s ∈ S+, 0 ≤ κ(s) and
|(1−t)θ(s, a1)+tθ′(s, a1)| ≥ R(λ), then applying Lemma E.17 proves the positivity of the integral
term which completes the proof.
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Lemma E.20. Assume A-2. It holds that

inf
θ∈B(λ)∩P

µλ
r (θ) ≥

λ(1− γ)mins ρ(s)
2

4|S| e−4· 1+λ log(2)
λ(1−γ) .

Proof. Using Lemma E.10, we have

inf
θ∈B(λ)∩P

µλ
r (θ) = min

c∈[M ]
inf

θ∈B(λ)∩P

 λ

|S|
1

1− γ
min
s

dρ,πθ
c (s) ·min

s,a
πθ(a|s)2 ·

∥∥∥∥∥d
ρ,π⋆,c

λ
c

dρ,θ
c

∥∥∥∥∥
−1

∞

 ,

where π⋆,c
λ is the unique optimal regularized policy of agent c. Fix any θ ∈ R|S|×|A| and c ∈ [M ].

Under A-2, it holds that for any s ∈ S, dρ,θ
c (s) ≥ (1 − γ)ρ(s). Additionally, as θ ∈ B(λ) then

∥θ∥∞ ≤ 1+λ log(2)
λ(1−γ) . Combining the two preceding inequalities yields

min
c∈[M ]

inf
θ∈B(λ)∩P

µλ
r,c(θ) ≥

λ(1− γ)mins ρ(s)
2

4|S| e−4· 1+λ log(2)
λ(1−γ) ,

which concludes the proof.

Combining the previous results, we can prove an exactly similar convergence rate to the one in
Theorem E.12, with the difference that we have a lower bound on the constant µλ

r .
Theorem E.21. Assume A-1, set θ0 = (0) and T = B(λ). For any η > 0 such that ηH ≤
888−1(1− γ)3(1 + λ log(|A|))−1, and T ≥ 1/(1− γ)the iterates of RS-FedPG satisfy

J⋆
r −E[Jr(θR)] ≤

(
1− ηHµλ

r

2

)R

(J⋆
r −Jr(θ

0) +
38(1 + λ log(2))2ε2P

µλ
r (1− γ)6

+
864η(1 + λ log(2)3

BMµλ
r (1− γ)7

+
16(1 + λ log(2))2γ2TT 2

µλ
r (1− γ)2

+
518η4H(H − 1)(1 + λ log(2))6

µλ
rB

2(1− γ)16
.

where µλ
r = infθ∈B(λ)∩P µλ

r (θ). Additionally, if one assume A-2 then

µλ
r ≥ λ(1− γ)mins ρ(s)

2

4|S| e−4· 1+λ log(2)
λ(1−γ) .

Proof. The proof is exactly similar to that of Theorem E.12. The only difference is that we include
an additional step at the very beginning, that is

−E
[
Jr(θ

r+1)
∣∣Fr

]
≤ −E

[
Jr(θ̄

r+1)
∣∣Fr

]
,

which holds by Lemma E.16 and Lemma E.19. The bound on µλ
r holds by Lemma E.20.

F Analysis of b-RS-FedPG

F.1 Bit-level auto-regressive softmax parametrization

Let us consider an FRL instance (Mc)c∈[M ], where the number of actions is a power of two, i.e,
there exists k such that |A| = 2k. This can be assumed without any loss of generality by adding
artificial actions to the MDP that have the same effect as any fixed action a ∈ A for instance. In
what follows, we aim to construct an bit-level FRL instance (M̄c := (S̄, Ā, γ̄, P̄c, r̄ ))c∈[M ] with 2
actions and show that we can reformulate the FRL task associated with (Mc)c∈[M ] over the class of
stationary non-deterministic policies by solving the FRL task associated with (M̄c)c∈[M ].

Define the alphabet Σ := {0, 1} and define the space of all words in alphabet Σ as Σ∗ =
⋃∞

k=0 Σ
k

including the empty word, the length of a word w is denoted by |w|. Additionally, we define the
operation of concatenation of two words w and w′ as w ◦w′ and we define a prefix of length k of the
word w = w1 ◦w2 . . . ◦w|w| as w:k = w1 ◦w2 ◦ . . . ◦wk for k ≤ |w|, where wi ∈ Σ are individual
characters. Then we define Σ<k as a set of words of length smaller than k.
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Then, since |A| = 2k, we can associate the action space of the FRL instance (Mc)c∈[M ] with a
set Σk of binary words of length exactly k, and define the corresponding action as aw for w ∈ Σk.
Conversely, we define w(a) as the word associated with action a.

Now, consider an FRL instance with |S| × 2k−1 states, which we denote by S̄ for S̄ := S × Σ<k.

The set of actions of this FRL is given by our binary alphabet Ā := Σ.

For a given agent c ∈ [M ], the transition kernel of agent c is defined as:

P̄c((s
′, w′)|(s, w), ā) :=

{
Pc(s

′|s, aw◦ā) · 1(w′ = ∅) if |w| = k − 1,

1((s′, w′) = (s, w ◦ ā)) otherwise .

Similarly, we define the reward function as follows:

r̄ ((s, w), ā) :=

{
γ− k−1

k r(si, aw◦ā), if |w| = k − 1 ,

0, otherwise .

For a given logit θ ∈ R|S̄|×|Ā|, we define the following softmax policy in the extended environment
as

π̄θ(0|(s, w)) :=
exp(θ((s, w), 0))

exp(θ((s, w), 1)) + exp(θ((s, w), 0))
,

π̄θ(1|(s, w)) :=
exp(θ((s, w), 1))

exp(θ((s, w), 0)) + exp(θ((s, w), 1))
.

Drawing inspiration for auto-regressive sequence modeling, we can define the following correspond-
ing policy in the original FRL instance

πθ(aw|s) :=
k∏

p=1

π̄θ(wp|(s, w:p)) =

k∏
p=1

exp(θ((s, w:p), wp))

exp(θ((s, w:p), 0)) + exp(θ((s, w:p), 1))
.

Compared to a usual softmax parameterization, this bit-level softmax parameterization allows to
execute a policy πθ using only k = log2(|A|) operations instead of |A|, which is useful when the
action space is large.

In this bit-level FRL instance, the discount factor γ must be rescaled to reflect the fact that states
embedding the original FRL instance’s states are k times farther apart. We define the rescaled
discount factor as γ̄ := γ1/k. Define the bit-entropy regulariser as

Hρ
b,c(θ) := Eπ

[ ∞∑
t=0

γthθ
b(S

t
c, A

t
c)

∣∣∣∣S0
c ∼ ρ

]
, where (65)

hθ
b(s, a) := −

k−1∑
p=0

γp/k log π̄θ(w(a)p|(s, w(a):p)) .

Finally, denote by Ṽ θ
b,c(s) = V πθ

c (s) + λHθ
b,c(s) and by V̄c the entropy-regularized value function

in this bit-level MDP associated to the c-the agent. The following proposition links the entropy-
regularised value function associated with a policy π̄θ in the bit-level MDP to the bit-entropy regu-
larised value function associated with the policy π̄θ in the original MDP.
Proposition F.1. Let (Mc)c∈[M ] be an FRL instance and let (M̄c)c∈[M ] be the corresponding bit-
level FRL instance. For any c ∈ [M ], for any s ∈ S, it holds that

V̄ π̄θ
c ((s, ∅)) = Ṽ θ

b,c(s) .

Proof. Fix c ∈ [M ] and let s ∈ S. Let ((S̄t
c, W̄

t
c ), Ā

t
c) be the trajectory followed by an agent

starting from state (s, ∅) and following the policy π̄θ in the MDP M̄c. Similarly, let (St
c, A

t
c) be

the trajectory followed by an agent following the policy πθ in the MDP Mc. By construction, it
holds that (St

c, A
t
c) ∼ (S̄kt+k−1

c , aW̄kt+k−1
c ◦Ākt+k−1

c
). Note that the agent obtains non-null-reward
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only when he is in a state of type (s, w) where w is a word of length k − 1 and which happens
deterministically every k iterations. Thus, we have

V̄ π̄θ
c ((s, ∅)) = Eπ

[ ∞∑
t=0

γ̄t
[̄
r ((S̄t

c, W̄
t
c ), Ā

t
c)− λ log π̄θ(Ā

t
c | (S̄t

c, W̄
c
t ))
] ∣∣∣∣(S̄0

c , W̄
0
c ) = (s, ∅)

]

= Eπ

[ ∞∑
t=0

γ̄kt+k−1r̄ ((S̄kt+k−1
c , W̄ kt+k−1

c ), Āc
kt+k−1)

∣∣∣∣(S̄0
c , W̄

0
c ) = (s, ∅)

]

− λ

∞∑
t=0

γ̄ktEπ

[ k−1∑
p=0

γ̄p log π̄θ(Ā
kt+p
c | (S̄kt+p

c , W̄ kt+p
c ))

∣∣∣∣(S̄0
c , W̄

0
c ) = (s, ∅)

]

= Eπ

[ ∞∑
t=0

γtr(St
c, A

t
c)

∣∣∣∣S0
c = s

]

− λ

∞∑
t=0

γtEπ

[ k−1∑
p=0

γ̄p log π̄θ(w(A
t
c)p|(St

c, w(A
t
c):p))

∣∣∣∣S0
c = s

]
= Ṽ θ

b,c(s) ,

where in the before last inequality, we used that for any p ∈ {0, . . . k− 1}, W̄ kt+p
c is a deterministic

function of W̄ kt+k−1
c ◦ Ākt+t−1

c and that aW̄kt+k−1
c ◦Ākt+k−1

c
∼ At

c combined with the fact that
S̄kt+p
c = S̄kt

c .

F.2 Designing and analyzing b-RS-FedPG

b-RS-FedPG is a special instance of proj-FedAVG in which, the local objective function is fc =

Jb,c
∆
= Jsm,c + λHρ

b,c, We define the global objective of this algorithm as Jb := 1/M
∑M

c=1 Jb,c.

The projection set for this algorithm is T = Bb(λ) defined as the ℓ∞ ball of radius Rb(λ)
∆
=

(1+ λ log(2))/(λ(1− γ̄)). Finally, the data distribution ξc(θ) corresponds to the distribution νc(θ).
Subsequently, we aim to show that b-RS-FedPG satisfies the same properties of RS-FedPG in the
case where |A| = 2.

Using Proposition F.1, it holds that for any c ∈ [M ], Jb,c inherit similar properties to the one
established on Jr,c. In particular, we have that:

• Jb,c is L2,b
∆
= (8 + λ(4 + 8 log(2))/(1− γ̄)3-smooth.

• ∇Jb is bounded by L1,b
∆
= (1 + λ log(2))(1− γ̄)2.

• Jb is three times differentiable and has a third derivative tensor bounded by L3,b
∆
= (480+

832λ log(2))/(1− γ̄)4.

• the gradient heterogeneity is uniformly bounded by ζ2r
∆
=

38(1+λ log(2))2ε2P
(1−γ̄)6 .

• Jb,c(projB(λ)(θ)) ≥ Jb,c(θ) , for any θ ∈ P , where

Pb
∆
= {θ ∈ RS̄×Ā,∀(s, w) ∈ S̄, ⟨θ((s, w), ·), (1)⟩ = 0} . (66)

We define the following distribution on S̄.

ρ̄((s, w)) :=

{
ρ(s), if w = ∅ ,
0, otherwise .

By Proposition F.1, it also holds that

∥∇Jb,c(θ)∥22 ≥ 2µλ
b,c(θ)

[
J⋆
r,c − Jr,c(θ)

]
, where

µλ
b,c(θ)

∆
=

λ

|S|(1− γ̄)
min

(s,w)∈S̄
d̄ ρ̄,θ
c ((s, w)) min

((s,w),a)∈S̄×Ā
π̄θ(a|(s, w))2

∥∥∥∥∥ d̄
ρ̄,π̄⋆,λ

c
c

d̄ ρ̄,θ
c

∥∥∥∥∥
−1

∞

, (67)
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where π̄⋆,λ
c is the unique optimal regularized policy of agent c in the bit-level FRL instance, and

d̄ ρ̄,πθ
c is the state occupancy distribution of agent c in the bit-level FRL instance when using the

policy π̄θ.

We now cautiously design the stochastic estimator of the gradient so that it matches the entropy-
regularized stochastic estimator that would have been used in the bit-level MDP by RS-FedPG. For
any parameter θ ∈ R|S̄|×|Ā|, and given an observation Zc ∼ νc(θ), the biased estimator of the
stochastic gradient is set to be:

gZc

b,c :=
1

B

B∑
b=1

k(T−1)∑
t=0

γ̄t

(
t∑

ℓ=0

∇ log π̄θ(w(A
pt

c,b)qt
|(Spt

c,b, w(A
pt

c,b):qt
))

)
Rt

c,b , (68)

where

Rt
c,b

∆
=
[
1qt=k−1r(S

pt

c,b, A
pt

c,b)− λ log π̄θ(w(A
pt

c,b)qt
|(Spt

c,b, w(A
pt

c,b):qt
))
]

,

pt
∆
= ⌊t/k⌋, and qt

∆
= t − k⌊t/k⌋. Importantly, note that the distribution of

((S
pt

c,b, w(A
pt

c,b):qt
), w(A

pt

c,b)qt
) is νb,c(θ) where for any c ∈ [M ], θ ∈ R|S̄|×|Ā|, and z ∈ (S̄ ×Ā)kT ,

we have

νb,c(θ; z)
∆
= ρ̄((s0, w0))π̄θ(a

0|(s0, w0)) ·
kT−1∏
t=1

P̄c((s
t, wt) | (st−1, wt−1), at−1)π̄θ(a

t|(st, wt)) .

This remark is fundamental as it allows us to derive the following properties of the stochastic esti-
mator

• The second and fourth central moment of gZc

b,c(θ) are respectively bounded by

σ2
b,2

∆
=

12 + 24λ2(log(2))2

B(1− γ̄)4
, σ4

b,4
∆
=

1120 + 4480λ4 log(2)4

B2(1− γ̄)8
.

• The bias of the estimator is bounded by βb
∆
= 2(1+λ log(2))γ̄kT

1−γ̄

(
kT + 1

1−γ̄

)
.

• gb,c
∆
= EZc∼νc(θ)[g

Zc

b,c] is L2,b
∆
= (8 + λ(4 + 8 log(2))/(1− γ̄)3-smooth.

• For all r ∈ [R], we have θr ∈ Pb where (θr,hc ) are the iterates generated by b-RS-FedPG.

Before applying Theorem E.21 to derive the convergence for b-RS-FedPG, it remains to prove that
infθ∈Bb(λ)∩Pb

µλ
b(θ)

∆
= minc∈[M ] µ

λ
b,c(θ) is strictly positive. This is not straightforward as ρ̄ does

not cover the whole state S̄, and thus it is not clear why d̄ ρ̄,πθ
c ((s, w)) is positive for all (s, w) ∈ S̄.

However, by exploiting our knowledge on the transitions of the bit-level FRL instance, we can
guarantee such a property, which is what we do subsequently.
Lemma F.2. Assume A-2. It holds that

min
c∈[M ]

inf
θ∈B(λ)∩P

µλ
r,c(θ) ≥

γ̄3k−3λ(1− γ̄)

4k|S| min
s

ρ(s)2e−4k· 1+λ log(2)
λ(1−γ̄) .

Proof. Fix any θ ∈ R|S̄|×|Ā| and c ∈ [M ]. Under A-2, it holds that for any (s, ∅) ∈ S̄, d̄c,θ
ρ̄ ((s, ∅)) ≥

(1− γ̄)ρ(s). Using the flow conservation constraints for occupancy measures (Puterman, 1994), for
any agent c ∈ [M ], and (s, w) ∈ S̄ such that k = |w| ≠ ∅, it holds that

d̄c,θ
ρ̄ ((s, w)) = (1− γ)ρ̄(s, w) + γ̄

∑
(s′,w′),a′)

P̄c((s, w)|(s′, w′), a′)π̄θ(a
′|(s′, w′))d̄ ρ̄,θ

c ((s′, w′))

≥ γ̄πθ(wk|(s, w:k−1))d̄
ρ̄,θ
c ((s, w:k−1)) ≥ γ̄ min

(s,w),a
π̄θ(a|(s, w))d̄ ρ̄,θ

c ((s, w:k−1)) .

Unrolling the recursion on k, implies that

min
(s,w),a

d̄c,θ
ρ̄ ((s, w)) ≥ γ̄k−1 min

(s,w),a
π̄θ(a|(s, w))k−1(1− γ̄)ρ(s) . (69)

Additionally, as θ ∈ Bb(λ) ∩ Pb then min(s,w),a π̄θ(a|(s, w)) ≥ e−2· 1+λ log(2)
λ(1−γ̄) /2. Combining the

two preceding inequalities and applying (67) concludes the proof.
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Finally, we can directly apply Theorem E.21 to derive the convergence for b-RS-FedPG.
Theorem F.3. Assume A-1 and A-2, set θ0 = (0) and T = Bb(λ). For any η > 0 such that
ηH ≤ 888−1(1− γ̄)3(1 + λ log(2))−1, and T ≥ 1/(1− γ̄)the iterates of b-RS-FedPG satisfy

J⋆
b−E[Jb(θR)] ≤

(
1− ηHµλ

b

2

)R

(J⋆
b−Jb(θ

0) +
38(1 + λ log(2))2ε2P

µλ
b(1− γ̄)6

+
864η(1 + λ log(2)3

BMµλ
b(1− γ̄)7

+
16(1 + λ log(2))2γ̄2TT 2

µλ
b(1− γ̄)2

+
518η4H(H − 1)(1 + λ log(2))6

µλ
bB

2(1− γ̄)16
.

where

µλ
b

∆
=

γ̄3k−3λ(1− γ̄)

4k|S| min
s

ρ(s)2e−4k· 1+λ log(2)
λ(1−γ̄) .

Corollary F.4 (Sample and Communication Complexity of b-RS-FedPG). Assume A-1 and A-2.
Set θ0 = (0), T = Bb(λ). Define

µλ
b

∆
=

γ̄3k−3λ(1− γ̄)

4k|S| min
s

ρ(s)2e−4k· 1+λ log(2)
λ(1−γ̄) .

Let ϵ ≥ 190(1 + λ log(2))2ε2P(µ
λ
r )

−1(1− γ̄)−6. Then, for a properly chosen truncation horizon, a
properly chosen step size and number of local updates, b-RS-FedPG learns an ϵ-approximation of
the optimal objective with a number of communication rounds

R ≥ 888(1 + λ log(2)

(1− γ̄)2µλ
b

log
(5(J⋆

b−Jb(θ
0))

ϵ

)
,

for a total number of samples per agent of

RHB ≥ max
(24(1 + λ log(2))B

µλ
b(1− γ̄)3

,
8640(1 + λ log(2))3

(µλ
b)

2ϵM(1− γ̄)7
,

2 · 124(1 + λ log(2))2

ϵ1/2(µλ
b)

3/2(1− γ̄)5

)
log
(5(J⋆

b−Jb(θ
0))

ϵ

)
.

G Technical lemmas

G.1 Basic Lemmas

For completeness, we state withtout proofs basic results which are routinely used in our proofs.
Lemma G.1 (Theorem 2.1.5, Nesterov (2018)). If f : Rd → R is a L-smooth function, then we
have for any x, y ∈ Rd

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ − L

2
∥x− y∥22 .

Lemma G.2 (Reinforce). Let (Z,Z) be a measurable space, let Θ ⊂ Rd be open, and let µ be a
σ-finite measure on (Z,Z). Suppose

1. Y : Z×Θ → R is Z ⊗ B(Θ)-measurable.

2. For each z ∈ Z and each i = 1, . . . , d, the partial derivative

∂Y (z, θ)

∂θi

exists for all θ ∈ Θ and the map

Z×Θ ∋ (z, θ) 7→ ∂Y (z, θ)

∂θi

is measurable.
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3. For each θ ∈ Θ, γθ : Z → [0,∞) is a probability density w.r.t. µ, and for each i = 1, . . . , d
the map

z 7→ ∂γθ(z)

∂θi

exists for all θ ∈ Θ and is measurable on Z.

4. (Dominating function.) For each i = 1, . . . , d and each θ0 ∈ Θ, there exist a neighborhood
U ⊂ Θ of θ0 and an integrable function hi ∈ L1(µ) such that for µ-a.e. z ∈ Z and all
θ ∈ U , ∣∣∣∣ ∂

∂θi

[
Y (z, θ) γθ(z)

]∣∣∣∣ =
∣∣∣∂Y (z, θ)

∂θi
γθ(z) + Y (z, θ)

∂γθ(z)

∂θi

∣∣∣ ≤ hi(z).

Define

J(θ) =

∫
Z

Y (z, θ) γθ(z)µ(dz).

Then J : Θ → R is continuously differentiable, and for each i = 1, . . . , d,

∂J(θ)

∂θi
=

∫
Z

∂

∂θi

[
Y (z, θ) γθ(z)

]
µ(dz).

Equivalently,
∂J(θ)

∂θi
=

∫
Z

[
∂Y (z, θ)

∂θi
+ Y (z, θ)

∂ ln γθ(z)

∂θi

]
γθ(z)µ(dz).

G.2 Performance difference lemma

Lemma G.3 (First performance-difference lemma, Kakade and Langford (2002)). Consider an
MDP M = (S,A, γ,P, r) and let V π and be the value function in this MDP. For any policies
π1 and π2, it holds

V π1(ρ)− V π2(ρ) =
1

1− γ

∑
s∈S

dρ,π1(s)
∑
a∈A

π1(a|s) ·Aπ2(s, a) ,

where Aπ2 is the advantage function.

Lemma G.4 (Second Performance difference lemma, Russo (2019) ). Let us consider two MDPs
M1 = (S,A, γ,P1, r) and M2 = (S,A, γ,P2, r). Let V π

1 and V π
2 be respectively the two value

functions in these two MDPs. It holds that

V π
1 (s)− V π

2 (s) = E

[ ∞∑
t=0

γt(P1 − P2)V
π
2 (St, At)

∣∣∣∣∣s0 = s

]
,

where the expectation is taken over the trajectories (S0, A0, S1, A1 . . . ) generated by a stationary
policy π in the MDP M2.

Lemma G.5. Let us consider two MDPs M1 = (S,A, γ,P1, r) and M2 = (S,A, γ,P2, r) such
that sups,a∈S×A∥P1(·|s, a) − P2(·|s, a)∥1 ≤ εP. For a given stationary policy π, let V π

1 and
V π
2 be respectively the two value functions of this policy in these two MDPs. If ∥V π

1 ∥∞ ≤ c and
∥V π

2 ∥∞ ≤ c then it holds that for all s ∈ S

|V π
1 (s)− V π

2 (s)| ≤ εPc

1− γ
.

Proof. Follows directly from a combination of Lemma G.4, Holder’s inequality and the fact that
∥V π

2 ∥∞ ≤ c and ∥V π
2 ∥∞ ≤ c.

Lemma G.6. Assume A-1. Then, for all c, c′ ∈ [M ], it holds that

∥dρ,θ
c′ − dρ,θ

c ∥1 ≤ γεP
1− γ

.
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Proof. Let us start from the definition of flow conservation constraints for occupancy measures
(Puterman, 1994) for any agent c ∈ [M ]

dρ,θ
c (s) = (1− γ)ρ(s) + γ

∑
(s′,a′)

Pc(s|s′, a′)πθ(a
′|s′)dρ,θ

c (s′) .

Then, we have∑
s

|dρ,θ
c′ (s)− dρ,θ

c (s)| ≤ γ
∑
s′,a′

∑
s

∣∣∣Pc′(s|s′, a′)πθ(a
′|s′)dρ,θ

c′ (s′)− Pc(s|s′, a′)πθ(a
′|s′)dρ,θ

c (s′)
∣∣∣

≤ γ
∑
s′,a′

∑
s

|Pc′(s|s′, a′)− Pc(s|s′, a′)|︸ ︷︷ ︸
≤εP

πθ(a
′|s′)dρ,θ

c′ (s′)

+ γ
∑
s′,a′

∑
s

Pc(s|s′, a′)︸ ︷︷ ︸
=1

πθ(a
′|s′)

∣∣∣dρ,θ
c′ (s′)− dρ,θ

c (s′)
∣∣∣

≤ γεP + γ
∑
s

|dρ,θ
c′ (s)− dρ,θ

c (s)| ,

which concludes the proof.

G.3 Properties of softmax parametrization and value

In this section, we derive useful technical inequalities that show bounds on the derivatives of the
softmax parametrization. The results for the first two differentials could be extracted from Mei et al.
(2020).
Lemma G.7. For any u, v, w ∈ RS×A, we have

|dπθ[u](a|s)| ≤ 2πθ(a|s)∥u∥∞ ,

|d2πθ[u, v](a|s)| ≤ 8πθ(a|s)∥u∥∞∥v∥∞ ,

|d3πθ[u, v, w](a|s)| ≤ 48πθ(a|s)∥u∥∞∥v∥∞∥w∥∞ .

Proof. Let us start from the expression for the derivative of parametrization (see, e.g., Lemma C.1.
of Agarwal et al. (2020))

∂πθ(a|s)
∂θ(s, a1)

= πθ(a|s)(1a(a1)− πθ(a1|s)) ,

thus
dπθ[u](a|s) = πθ(a|s) · (u(s, a)− ⟨πθ(·|s), u(s, ·)⟩) .

To simplify the following notation, we define a random variable A ∼ πθ(·|s), then we have

dπθ[u](a|s) = πθ(a|s) · (u(s, a)− Eπθ
[u(s,A)]) .

Using the fact that |u(s, a)− Eπθ
[u(s,A)]| ≤ 2∥u∥∞, we conclude the first statement.

Next, we continue by deriving the second derivative

∂2πθ(a|s)
∂θ(s, a1)∂θ(s, a2)

= πθ(a|s)(1a(a2)− πθ(a2|s))(1a(a1)− πθ(a1|s))

− πθ(a|s)πθ(a1|s)(1a1
(a2)− πθ(a2|s))

= πθ(a|s) ((1a(a2)− πθ(a2|s))(1a(a1)− πθ(a1|s))− πθ(a1|s)(1a1(a2)− πθ(a2|s))) .
In particular, we have

d2πθ[u, v](a|s) = πθ(a|s)
∑
a1,a2

((1a(a2)− πθ(a2|s))(1a(a1)− πθ(a1|s))))u(s, a1)u(s, a2)

− πθ(a|s)
∑
a1,a2

πθ(a1|s)(1a1
(a2)− πθ(a2|s))u(s, a1)v(s, a2)
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= πθ(a|s)(u(s, a)− ⟨πθ(·|s), u(s, ·)⟩)(v(s, a)− ⟨πθ(·|s), v(s, ·)⟩)
− πθ(a|s) (⟨πθ(·|s), u(s, ·) · v(s, ·)⟩ − ⟨πθ(·|s), u(s, ·)⟩ · ⟨πθ(·|s), v(s, ·)⟩) .

Using the same inequality, we have

|d2πθ[u, v](a|s)| ≤ 8πθ(a|s)∥u∥∞∥v∥∞ .

Finally, we continue with the computation of the third differential:

d3πθ[u, v, w](a|s) = d [πθ(a|s)(u(s, a)− ⟨πθ(·|s), u(s, ·)⟩)(v(s, a)− ⟨πθ(·|s), v(s, ·)⟩)] [w]︸ ︷︷ ︸
(D1)

− d [πθ(a|s) (⟨πθ(·|s), u(s, ·) · v(s, ·)⟩ − ⟨πθ(·|s), u(s, ·)⟩ · ⟨πθ(·|s), v(s, ·)⟩)] [w]︸ ︷︷ ︸
(D2)

.

Next, we consider each term separately. First, we have

(D1) = dπθ[w](a|s) · (u(s, a)− ⟨πθ(·|s), u(s, ·)⟩)(v(s, a)− ⟨πθ(·|s), v(s, ·)⟩)[w]
− πθ(a|s)⟨dπθ[w](·|s), u(s, ·)⟩)(v(s, a)− ⟨πθ(·|s), v(s, ·)⟩)
− πθ(a|s)(u(s, a)− ⟨πθ(·|s), u(s, ·)⟩)⟨dπθ(·|s)[w], v(s, ·)⟩ .

To bound this term, we notice that for any x ∈ RS×A it holds

⟨dπθ(·|s)[w], x(s, ·)⟩ =
∑
a∈A

dπθ(a|s)[w] · x(s, a)

=
∑
a∈A

πθ(a|s)(w(s, a)− ⟨πθ(·|s), w(s, ·)⟩)x(s, a)

= E [x(s,A)w(s,A)]− E [x(s,A)]E [w(s,A)] = Cov(x(s,A), w(s,A)) ,

where a random variable A follows πθ(·|s). Using this relation, we have

|(D1)| ≤ πθ(a|s) · |w(s, a)− E[w(s,A)]| · |u(s, a)− E[w(s,A)]| · |v(s, a)− E[w(s,A)]|
+ πθ(a|s)|Cov(u(s,A), w(s,A))||v(s, a)− E[v(s,A)]|
+ πθ(a|s)|Cov(v(s,A), w(s,A))||u(s, a)− E[u(s,A)]| .

Next, we notice that |x(s, a) − E[x(s,A)]| ≤ 2∥x∥∞ for any x ∈ RS×A, and, as a result,
|Cov(x(s,A), w(s,A))| ≤ 4∥x∥∞∥w∥∞. Thus, we have

|(D1)| ≤ 24πθ(a|s)∥u∥∞∥v∥∞∥w∥∞ .

Next, we analyze the second term. For this term, we have

(D2) = dπθ(a|s)[w] · Cov(u(s,A), v(s,A)) + πθ(a|s)
(
⟨dπθ(·|s)[w], u(s, ·) · v(s, ·)⟩

− ⟨dπθ(·|s)[w], u(s, ·)⟩ · ⟨πθ(·|s), v(s, ·)⟩ − ⟨πθ(·|s), u(s, ·)⟩ · ⟨dπθ[w](·|s), v(s, ·)⟩
)
.

By the same reasoning as for term (D1), we have

|(D2)| ≤ 24πθ(a|s)∥u∥∞∥v∥∞∥w∥∞ ,

thus we have
|d3πθ[u, v, w]|(a|s) ≤ 48πθ(a|s)∥u∥∞∥v∥∞∥w∥∞ .

Lemma G.8. Let H(πθ) ∈ RS be a vector of entropies of policy πθ. Then we have

∥dH(πθ)[u]∥∞ ≤ 2 log |A| · ∥u∥∞ ,

∥d2H(πθ)[u, v]∥∞ ≤ (4 + 8 log |A|)∥u∥∞∥v∥∞ ,

∥d3H(πθ)[u, v, w]∥∞ ≤ (56 + 48 log |A|)∥u∥∞∥v∥∞∥w∥∞
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Proof. We recall that H(πθ)(s) = −∑a∈A πθ(a|s) log πθ(a|s) .

Define a function h(x) = −x log x, then we have h′(x) = −(log x+ 1), h′′(x) = −1/x, h′′′(x) =
1/x2. Thus, by Lemma G.7 we have

dH(πθ)[u](s) =
∑
a∈A

dh(πθ(a|s))[u] =
∑
a∈A

h′(πθ(a|s)) · dπθ[u](a|s)

=
∑
a∈A

−(log πθ(a|s) + 1) · πθ(a|s)(u(s, a)− ⟨πθ(·|s), u(s, ·)⟩).

Notice that ∑
a∈A

πθ(a|s)(u(s, a)− ⟨πθ(·|s), u(s, ·)⟩) = 0 ,

thus, using |u(s, a) − ⟨πθ(·, s), u⟩| ≤ 2∥u∥∞ and
∑

a∈A |πθ(a|s) log πθ(a|s)| ≤ log |A|, we con-
clude the first statement.

Next, we have to compute the second differential; here we have by a high-order chain rule

d2H(πθ)[u, v](s) =
∑
a∈A

d2h(πθ(a|s))[u]

=
∑
a∈A

h′′(πθ(a|s))dπθ(a|s)[u]dπθ(a|s)[v] +
∑
a∈A

h′(πθ(a|s))d2πθ(a|s)[u, v]

=
∑
a∈A

(
− 1

πθ(a|s)

)
dπθ(a|s)[u]dπθ(a|s)[v]−

∑
a∈A

(log πθ(a|s) + 1)d2πθ(a|s)[u, v] .

Next, we see that by linearity

∑
a∈A

dπθ(a|s)[u] = d

(∑
a∈A

πθ(a|s)
)
[u] = 0 ,

thus the sum of second and third derivatives also should be equal to zero.

Using a bound from Lemma G.7, we have

|d2H(πθ)[u, v](s)| ≤
∑
a∈A

4πθ(a|s)∥u∥∞∥v∥∞ + 8
∑
a∈A

| log πθ(a|s)| · πθ(a|s)∥u∥∞∥v∥∞ .

By a bound on entropy, we conclude the second statement.

For the last statement, we also apply the high-order chain rule to have

d3H(πθ)[u, v, w](s) =
∑
a∈A

h′′′(πθ(a|s))dπθ(a|s)[u]dπθ(a|s)[v]πθ(a|s)[w]

+
∑
a∈A

h′′(πθ(a|s))d2πθ(a|s)[u,w]dπθ(a|s)[v]

+
∑
a∈A

h′′(πθ(a|s))dπθ(a|s)[u]d2πθ(a|s)[v, w]

+
∑
a∈A

h′′(πθ(a|s))dπθ(a|s)[w]d2πθ(a|s)[u, v]

+
∑
a∈A

h′(πθ(a|s))d3πθ(a|s)[u, v, w] .

Using a fact that
∑

a∈A d3πθ(a|s)[u, v, w] = 0, we have the following from by Lemma G.7

|d3H(πθ)[u, v, w](s)| ≤ (56 + 48 log |A|)∥u∥∞∥v∥∞∥w∥∞ .
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Lemma G.9. Let Ṽ πθ
c be a regularized value function in the MDP that corresponds to an agent

c ∈ [M ]. Then for any u, v, w ∈ RS×A, its directional derivatives satisfy the following bounds

∥dṼ πθ
c [u]∥∞ ≤ 8 + 10λ log |A|

1− γ
∥u∥∞ ,

∥d2Ṽ πθ
c [u, v]∥∞ ≤ 40 + 60λ log |A|

(1− γ)3
∥u∥∞∥v∥∞ ,

∥d3Ṽ πθ
c [u, v, w]∥∞ ≤ 480 + 832λ log |A|

(1− γ)4
∥u∥∞∥v∥∞∥w∥∞ .

Proof. Let us start by writing down regularized Bellman equations (see, e.g., Geist et al. (2019)). In
the following, we treat Q̃π

c as a matrix of size S × A with elements Q̃π
c (s, a) and πθ as a matrix of

size A× S with elements πθ(a|s),

Ṽ πθ
c = Q̃πθ

c · πθ + λH(πθ) , Q̃πθ
c = r + γPcṼ

πθ
c ,

where Pc is a linear operator from a space of vectors of size S to a space of matrices of size S ×A,
and H(π) ∈ RS is a vector of policy entropies for each state.

First differential. We start as follows

dṼ πθ
c [u] = Q̃πθ

c · dπθ[u] + dQ̃πθ
c [u] · πθ + λdH(πθ)[u], dQ̃πθ

c [u] = γPcdṼ
πθ
c [u] .

Thus, we have

dṼ πθ
c [u] = Q̃πθ

c · dπθ[u] + γPcdṼ
πθ
c [u] · πθ + λdH(πθ)[u] .

As a result, we have

∥dṼ πθ
c [u]∥∞ ≤ ∥Q̃πθ

c · dπθ[u]∥∞ + γ∥PcdṼ
πθ
c [u] · πθ∥∞ + λ∥dH(πθ)[u]∥∞ . (70)

For the first term, we have for any s ∈ S by a simple bound on Q-value and Lemma G.7

|Q̃πθ
c · dπθ[u]|(s) ≤

1 + λ log |A|
1− γ

∑
a∈A

|dπθ[u](a|s)| ≤
8(1 + λ logA)

1− γ
∥u∥∞ .

For the second term, we have for any s ∈ S

∥PcdṼ
πθ
c [u] · πθ∥∞ = max

s

∣∣∣∣∣∣
∑
a,s′

Pc(s
′|s, a)dṼ πθ

c [u] · πθ(a|s)

∣∣∣∣∣∣ ≤ ∥Ṽ πθ
c [u]∥∞ .

finally, by Lemma G.8 we have

∥dH(πθ)[u]∥∞ ≤ 2 log |A| · ∥u∥∞.

Thus, from (70) it holds

∥dṼ πθ
c [u]∥∞ ≤ γ∥dṼ πθ

c [u]∥∞ +
8 + 10λ log |A|

1− γ
∥u∥ .

Rearranging the terms, we conclude the first statement.

Second differential. For the second differential, we have

d2Ṽ πθ
c [u, v] = d

(
Q̃πθ

c · dπθ[u]
)
[v] + γd

(
PcdṼ

πθ
c [u] · πθ

)
[v] + λd2H(πθ)[u, v]

=
(
dQ̃πθ

c [v]
)
dπθ[u] + Q̃πθ

c · d2πθ[u, v] + γPcd
2Ṽ πθ

c [u, v] · πθ

+ γPcdṼ
πθ
c [u]dπθ[v] + λd2H(πθ)[u, v]

= Q̃πθ
c · d2πθ[u, v] + γPcdṼ

πθ
c [u]dπθ[v] + γPcdṼ

πθ
c [v]dπθ[u]

+ γPcd
2Ṽ πθ

c [u, v] · πθ + λd2H(πθ)[u, v] .
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Next, to derive a bound, we apply the bound on the first differential of the value as well Lemma G.7
and Lemma G.8:

|Q̃πθ
c · d2πθ[u, v]|(s) ≤

1 + λ log |A|
1− γ

∑
a∈A

|d2πθ(a|s)[u, v]| ≤
8(1 + λ log |A|))

1− γ
∥u∥∞∥v∥∞ ,

|PcdṼ
πθ
c [u]dπθ[v]|(s) ≤ ∥dṼ πθ

c [u]∥∞
∑
a∈A

|dπθ(a|s)[v]| ≤
16 + 20λ log |A|

(1− γ)2
∥u∥∞∥v∥∞ ,

|Pcd
2Ṽ πθ

c [u, v] · πθ|(s) ≤ ∥d2Ṽ πθ
c [u, v]∥∞ ,

|d2H(πθ)[u, v]|(s) ≤ (4 + 8 log |A|)∥u∥∞∥v∥∞ ,

thus

∥d2Ṽ πθ
c [u, v]∥∞ ≤ γ∥d2Ṽ πθ

c [u, v]∥∞

+

(
32 + 40λ log |A|

(1− γ)2
+

8(1 + λ log |A|)
1− γ

+ λ(4 + 8 log |A|)
)
∥u∥∞∥v∥∞ .

Since |A| ≥ 2, then 2 log |A| ≥ 1, we can simplify it as follows

∥d2Ṽ πθ
c [u, v]∥∞ ≤ 40 + 64λ log |A|

(1− γ)3
∥u∥∞∥v∥∞ .

Third differential. Next, we proceed with the third differential as follows

d3Ṽ πθ
c [u, v, w] = Q̃πθ

c · d3πθ[u, v, w] + γPcdṼ
πθ
c [w] · d2πθ[u, v]

+ γPcd
2Ṽ πθ

c [u,w]dπθ[v] + γPcdṼ
πθ
c [u]d2πθ[v, w]

+ γPcd
2Ṽ πθ

c [v, w]dπθ[u] + γPcdṼ
πθ
c [v]d2πθ[u,w]

+ γPcd
2Ṽ πθ

c [u, v] · dπθ[w] + γPcd
3Ṽ πθ

c [u, v, w] · πθ + d3H(πθ)[u, v, w] .

By the triangle inequality

∥d3V πθ
c [u, v, w]∥∞ ≤ ∥Qπθ

c · d3πθ[u, v, w]∥∞ + γ∥PcdV
πθ
c [w] · d2πθ[u, v]∥∞

+ γ∥Pcd
2V πθ

c [u,w]dπθ[v]∥∞ + γ∥PcdV
πθ
c [u]d2πθ[v, w]∥∞

+ γ∥Pcd
2V πθ

c [v, w]dπθ[u]∥∞ + γ∥PcdV
πθ
c [v]d2πθ[u,w]∥∞

+ γ∥Pcd
2V πθ

c [u, v] · dπθ[w]∥∞ + γ∥Pcd
3V πθ

c [u, v, w] · πθ∥∞
+ ∥d3H(πθ)[u, v, w]∥∞ .

To simplify notation, let us define R1,2(u, v, w) := ∥PcdV
πθ
c [u, v]d2πθ[w]∥∞ and R2,1(u, v, w) :=

∥Pcd
2V πθ

c [u, v]dπθ[w]∥∞. Next, we notice that

∥Pcd
3V πθ

c [u, v, w] · πθ∥∞ = max
s

∣∣∣∣∣∑
s′

πθ(a|s)P(s′|s, a)d3V πθ
c [u, v, w]s′

∣∣∣∣∣ ≤ ∥d3V πθ
c [u, v, w]∥∞ ,

thus, we have a contraction argument that implies

∥d3V πθ
c [u, v, w]∥∞ ≤ 1

1− γ

(
∥Qπθ

c · d3πθ[u, v, w]∥∞ + ∥d3H(πθ)[u, v, w]∥∞

+ γ(R1,2(w, u, v) +R1,2(u, v, w) +R1,2(v, u, w))

+ γ(R2,1(u,w, v) +R2,1(v, w, u) +R2,1(u, v, w))

)
.

(71)

Next, we bound all terms that appear in the bound above. First, we apply Lemma G.7 for a fixed
state s ∈ S

|Q̃πθ
c · d3πθ[u, v, w]|(s) ≤

∑
a∈A

|Q̃πθ
c (s, a) · d3πθ[u, v, w](a|s)|
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≤ 1 + λ log |A|
1− γ

∑
a∈A

|d3πθ[u, v, w](a|s)|

≤ 48(1 + λ log |A|)
1− γ

∥u∥∞∥v∥∞∥w∥∞ .

Also, by Lemma G.8 we have

∥d3H(πθ)[u, v, w]∥∞ ≤ (56 + 48 log |A|)∥u∥∞∥v∥∞∥w∥∞ .

Next we bound R1,2 as follows

R1,2(u, v, w) = max
s∈S

∣∣∣∣∣∑
a∈A

(PcdṼ
πθ
c [u])(s, a)d2πθ[v, w](a|s)

∣∣∣∣∣
≤ ∥dṼ πθ

c [u]∥∞ ·max
s∈S

∑
a∈A

∣∣d2πθ[v, w](a|s)
∣∣ .

Applying the bound for the first differential as well as Lemma G.7

R1,2(u, v, w) ≤
8 · (8 + 10λ log |A|)

(1− γ)2
∥u∥∞∥v∥∞∥w∥∞ .

Finally, using the same idea, we have the following bound for R2,1:

R2,1(u, v, w) ≤ ∥d2Ṽ πθ
c [u, v]∥∞ ·max

s∈S

∑
a∈A

|dπθ[w](a|s)|

≤ 2 · (40 + 64λ log |A|)
(1− γ)3

∥u∥∞∥v∥∞∥w∥∞ .

Overall, we can rewrite (71) as follows

∥d3V πθ
c [u, v, w]∥∞ ≤ 1

1− γ

(
48(1 + λ log |A|)

1− γ
+ λ(56 + 48 log |A|)

+
24 · (8 + 10λ log |A|)

(1− γ)2
+

6 · (40 + 64λ log |A|)
(1− γ)3

)
∥u∥∞∥v∥∞∥w∥∞ ,

and, after rearranging the terms and using a bound 2 log |A| ≥ 1, we have the following bound

∥d3V πθ
c [u, v, w]∥∞ ≤ 480 + 832λ log |A|

(1− γ)4
∥u∥∞∥v∥∞∥w∥∞ .

H Experiments

In this section, we provide further experimental details and additional experiments on the one de-
scribed in Section 5. Experiments were conducted on a computer with an Intel Xeon 6534 and
196GB RAM.2 We report the average over 4 runs and the standard deviation in all the plots.

We conduct experiments on synthetic and gridworld problems. In each problem, for each agent c,
the transition kernel Pc is defined as a mixture of two kernels: Pc = (1− εP)P

com + εPP
ind
c where

Pcom
c is a common kernel, and Pind

c is an individual kernel specific to each agent. We now describe
these kernel for the our synthetic and gridworld problems.

Synthetic. The synthetic environment was originally introduced by Zheng et al. (2023). In this
setting, all agents share a common reward function r, where each reward value r(s, a) for (s, a) ∈
S × A is independently sampled from the uniform distribution over [0, 1]. For each (s, a), the
transition kernels Pcom(· | s, a) and Pind

c (· | s, a) are drawn uniformly and randomly from the

2Our code is available online on GitHub: https://github.com/Labbi-Safwan/FedPolicy-gradient
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(b) Synthetic, H = 5, εP = 0.0
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(c) GridWorld, H = 5, εP = 0.3

Figure 7: Comparison of S-FedPG (crosses), RS-FedPG (circles), and b-RS-FedPG (triangles): (a)
Value of the global objective J(θr) in the GridWorld environment, for the three FedPG variants
and different numbers of agents M ∈ {2, 10, 50}, shown on a log-log scale; (b) Value of the global
objective J(θr) in the Synthetic environment, for the three FedPG variants and different numbers
of agents M ∈ {2, 10, 50}, shown on a log-log scale; (c) Value of the global objective J(θr) in
the GridWorld environment, for the three FedPG variants and different numbers of agents M ∈
{2, 10, 50}, shown on a log-log scale.

|S|-dimensional simplex. The agent starts randomly from a uniformly sampled position. In the
experiments with εP = 0 or 0.3, we consider environments with |S| = 5 states and |A| = 4 actions.

The highly heterogeneous synthetic FRL instance extends the previous setup by adding two states,
each reachable from one of the original five states. Once reached, these states yield a reward of
+1 at every timestep, and agents remain there indefinitely. This instance includes two types of
MDPs, differing in which high-reward state is accessible: in the first type, the first two actions
deterministically lead to the rewarding state, while the last two deterministically make the agent
stay in the same state; in the second type, this mapping is reversed. As a result, agents must take
opposing actions, similar to Figure 4, to maximize their rewards. This conflict requires stochastic
policies to ensure that, over time, all agents reach their respective high-reward states.

GridWorld. The GridWorld environment (Domingues et al., 2021) features an agent navigating
a 3 × 3 grid to reach a goal state at (2, 2), receiving a reward of +1 upon arrival and 0 otherwise.
The agent can move in four directions, with intended actions succeeding with probability 0.8 under
the shared dynamics Pcom, and failing to a random neighbor with probability 0.2. The individual
transition kernel Pind

c moves the agents to a neighboring cell with random probabilities that are
specific to each agent. A wall at (1, 1) results in |S| = 8 reachable states. The discount factor is γ =
0.95, and the agent starts from a uniformly sampled position. We use this setup for experiments with
εP = 0 and εP = 0.3. In the highly heterogeneous FRL instance, the target position is connected
to two additional states, similarly to what has been described in the heterogeneous synthetic
FRL instance, and does not yield any reward. Additionally, one of the two paths that leads to the
previously targeted position is suppressed.

The Fed-Q-learning algorithm we consider corresponds to the version introduced in Jin et al.
(2022), which operates under a generative model setting. Specifically, at each iteration, the algorithm
updates its Q-table using T×B samples drawn uniformly from the state-action space. For RS-FedPG
and b-RS-FedPG, we use a regularization temperature λ = 0.05. In addition to the results presented
in the main text, we provide supplementary plots demonstrating that our proposed algorithms exhibit
linear speedup in both the homogeneous and mildly heterogeneous regimes.

58


	Introduction
	Related Work
	Heterogeneous Federated Reinforcement Learning
	Solving Federated Reinforcement Learning with Policy Gradient Methods
	General FedPG framework 
	Analysis of S-FedPG
	Analysis of RS-FedPG
	Analysis of b-RS-FedPG

	Experiments
	Conclusion
	Notations
	On the different classes of policies
	Heterogeneous rewards

	Ascent lemma
	Analysis of S-FedPG
	Checking the assumptions and establishing a local Łojasiewicz structure
	Convergence rates, sample, and communication complexities

	Analysis of RS-FedPG
	Checking the assumptions and establishing a local Łojasiewicz structure
	Convergence rates, sample and communication complexities
	Establishing a bound on mu when |A| = 2

	Analysis of b-RS-FedPG
	Bit-level auto-regressive softmax parametrization
	Designing and analyzing b-RS-FedPG

	Technical lemmas
	Basic Lemmas
	Performance difference lemma
	Properties of softmax parametrization and value

	Experiments

