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Abstract—Vehicle-to-everything (V2X) communication technol-
ogy is revolutionizing transportation by enabling interactions be-
tween vehicles, devices, and infrastructures. This connectivity en-
hances road safety, transportation efficiency, and driver assistance
systems. V2X benefits from Machine Learning, enabling real-
time data analysis, better decision-making, and improved traffic
predictions, making transportation safer and more efficient.

In this paper, we study the problem of joint channel selection,
where vehicles with different technologies choose one or more
Access Points (APs) to transmit messages in a network. In this
problem, vehicles must learn a strategy for channel selection,
based on observations that incorporate vehicles’ information
(position and speed), network and communication data (Signal-
to-Interference-plus-Noise Ratio from past communications), and
environmental data (road type). We propose an approach based
on Federated Deep Reinforcement Learning (FedDRL), which
enables each vehicle to benefit from other vehicles’ experiences.
Specifically, we apply the federated Proximal Policy Optimization
(FedPPO) algorithm to this task. We show that this method im-
proves communication reliability while minimizing transmission
costs and channel switches. The efficiency of the proposed solution
is assessed via realistic simulations, highlighting the potential of
FedDRL to advance V2X technology.

I. Introduction

V2X technology enables the bidirectional exchange of infor-
mation between vehicles and other entities, such as infrastruc-
ture and pedestrians. It relies on multiple modes of commu-
nication: vehicle-to-vehicle, vehicle-to-infrastructure, vehicle-
to-pedestrian, and vehicle-to-network [15]. The wide range
of applications and the associated benefits are described in
detail in [25]. V2X systems have strong service requirements,
including minimal end-to-end latency (less than 1 ms), high
data transfer rates (up to 1 Gb/s), and exceptional reliability
(failure rate of less than 10−6). To meet these requirements,
vehicles are equipped with multiple access technologies for
communication in cooperative driving situations. Depending
on their surroundings, vehicles have to decide which combi-
nation of these technologies to use, aiming to establish reliable
connections, while remaining energy-efficient. Overcoming
challenges such as ensuring uninterrupted connectivity during
handover and mitigating the ping-pong effect [1] are thus
central challenges. In this study, we propose a solution to

the joint channel selection task based on Federated Deep
Reinforcement Learning (FedDRL).

Many V2X tasks can be framed as sequential decision
problems, making Reinforcement Learning (RL) a suitable ap-
proach. In RL, vehicles learn strategies for sequential decisions
from their environment. However, RL faces challenges in real-
world applications, especially in complex vehicular networks,
requiring adaptation to diverse situations. FedDRL offers a
solution by allowing vehicles to collaborate without sharing
raw data. It extends Federated Learning (FL) to sequential
decision tasks, aiming to develop global strategies applicable
across all vehicles. FedDRL accelerates training by utilizing
data from other vehicles and enables Deep Reinforcement
Learning (DRL) models to be trained directly on edge devices
like vehicles and/or roadside units. This reduces the need for
extensive data transfers compared to traditional decentralized
DRL [19]. The main two contributions of this paper are the
following:

• We develop a flexible framework for simulating federated
V2X communications. Our simulator is based on Veins
[10], and integrates with standard RL libraries. This al-
lows for easy implementation of federated RL algorithms.

• We apply the federated PPO methodology to joint channel
selection, where multiple vehicles in a network need to
communicate with each other. We demonstrate that fed-
erated PPO offers significant advantages in both learning
speed and robustness, with the learned policy proving
more reliable than those developed by individual agents
in a non-federated setting.

II. Related Work
RL has been applied to a variety of V2X tasks [24],

including dynamic mode selection for hybrid communication
[31] and transmission power and rate selection in congestion
scenarios [18]. In [11], the authors apply DRL-based resource
allocation for V2V links. In [16] a similar approach is used
for mode selection and resource allocation in cellular V2X
communication. It was also used to customize contention
parameters [27] and for packet scheduling [20].

FedDRL, an approach where multiple independent RL
agents collaborate to learn how to solve a task together, has
recently found many successful applications in V2X. In [26],
FedDRL was applied to computation offloading and resource
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management and showed a great improvement compared to the
previous state of the art. In [34] the authors apply FedDRL to
the task of resource allocation.

Several alternative approaches were investigated to get nu-
merous agents to jointly solve a V2X task using RL: (i) Multi-
Agent Reinforcement Learning (MARL) [32], where multiple
agents evolve in the same environment. Their actions directly
influence other agents, who must learn to interact with each
other. MARL has been successfully applied to resource allo-
cation in heterogeneous traffic [28] and platooning scenarios
[29]; (ii) Federated Multi-Agent Reinforcement Learning, an
approach that combines MARL with FL, and has proved
efficient in resource allocation problems [30, 33, 23, 35].

III. Federated PPO

In this section, we describe FedPPO, a variant of PPO [7,
Algorithm 1, p.5] adapted to the federated setting. FedPPO
allows agents to jointly learn a global policy (an actor) and a
second model that estimates the quality of this policy (a critic).
Both the actor and the critic are neural networks, respectively
parameterized by 𝜃 ∈ Θ ⊂ R𝑑𝜃 and 𝜙 ∈ Φ ⊂ R𝑑𝜙 . Variants of
this algorithm have already been successfully implemented in
similar problems, e.g., control, sensing and IoT [17, 12, 21].

We refer to vehicles as agents, that evolve independently
from each other in their own environment. The dynamics
of the environments are described by 𝑁 Markov Decision
Processes (MDP). The MDP of the agent 𝑐 ∈ [𝑁] is a tuple
(S,A, P𝑐, 𝑟𝑐, 𝛾, 𝜇𝑐), where S is a continuous state space and
A a finite set of actions, both common to all agents; for each
state-action pair (𝑠, 𝑎) ∈ S × A, P𝑐 is a transition kernel
that assigns a probability distribution P𝑐 ((𝑠, 𝑎), ·) over next
states, and 𝑟𝑐 ((𝑠, 𝑎), ·) is a reward kernel, that provides the
distribution of rewards; 𝜇𝑐 is the initial state distribution, and
𝛾 ∈ [0, 1] is the discount factor that determines the importance
of future rewards. Transition kernels and initial distributions
are independent, and typically differ from one agent to another.

The behavior of the agents is controlled by a shared policy
𝜋𝜃 : S×A → [0, 1], parameterized by 𝜃 ∈ Θ ⊂ R𝑑𝜃 , such that
𝜋𝜃 (𝑎 |𝑠) specifies the probability of taking action 𝑎 in state 𝑠.
The interaction between agent 𝑐 and its environment proceeds
as follows: the agent starts in a state 𝑠 (𝑐)0 , which is drawn from
the distribution 𝜇𝑐, then, at each time step 𝑡, the agent chooses
an action 𝑎 (𝑐)𝑡 according to the policy 𝜋𝜃 (·|𝑠𝑡 ). The agent then
receives a reward 𝑟

(𝑐)
𝑡 sampled from 𝑟𝑐 ((𝑠 (𝑐)𝑡 , 𝑎

(𝑐)
𝑡 ), ·), and

enters a new state 𝑠 (𝑐)
𝑡+1, which is determined by P𝑐 (·|𝑠 (𝑐)𝑡 , 𝑎

(𝑐)
𝑡 ).

The goal of FedDRL is to find a policy that maximizes the
reward obtained on average by all agents. This is done by
maximizing the following objective function 𝐽 (𝜃),

𝐽 (𝜃) = 1
𝑁

∑𝑁
𝑐=1 𝐽

𝑐 (𝜃) , where 𝐽𝑐 (𝜃) = E[∑∞
𝑡=0 𝛾

𝑡𝑟
(𝑐)
𝑡 ] . (1)

FedDRL is a framework that allows for finding the param-
eters that maximize this function using stochastic gradient as-
cent. The key feature of FedPPO is to estimate the gradient of

Algorithm: STEP (𝜃0,0, 𝜙0,0;𝐾, 𝐵, 𝜏, 𝐴, 𝑅, 𝛼, 𝜂)

Input: actor parameters 𝜃0,0, critic parameters 𝜙0,0, num-
ber of epochs 𝐾 , mini batch size 𝐵, trajectories 𝜏 =

{{(𝑠 (𝑚)
𝑡 , 𝑎

(𝑚)
𝑡 )}𝑇

𝑡=0}
𝑀
𝑚=1, advantage 𝐴 = {{𝐴(𝑚)

𝑡 }𝑇
𝑡=0}

𝑀
𝑚=1,

reward to-go 𝑅 = {{𝑅 (𝑚)
𝑡 }𝑇

𝑡=0}
𝑀
𝑚=1, learning rate sched-

ules 𝛼 = {𝛼𝑘}𝐾−1
𝑘=0 , and 𝜂 = {𝜂𝑘}𝐾𝑘=0.

• For 𝑘 = 0, . . . 𝐾 − 1 set the actor parameter 𝜃𝑛,𝑘+1 to

𝜃𝑛,𝑘 + 𝛼𝑘

𝐵

∑𝐵
𝑏=1 ∇𝜃𝐿 (𝜃𝑛,𝑘 ; 𝜃𝑛, 𝑠

(𝑚𝑏,𝑘 )
𝑡𝑏,𝑘

, 𝑎
(𝑚𝑏,𝑘 )
𝑡𝑏,𝑘

, 𝐴
(𝑚𝑏,𝑘 )
𝑡𝑏,𝑘

) ,

with 𝐿 as in (2), (𝑡𝑏,𝑘)1≤𝑏≤𝐵 and (𝑚𝑏,𝑘)1≤𝑏≤𝐵 are
sets of 𝐵 indices drawn uniformly from {0, . . . , 𝑇} and
{1, . . . , 𝑀}. Finally, set 𝜃𝑛+1 = 𝜃𝑛,𝐾 and 𝜃𝑛+1,0 = 𝜃𝑛,𝐾 .

• For 𝑘 = 0, . . . 𝐾 − 1, update the critic parameters

𝜙𝑘+1 = 𝜙𝑘 − 𝜂𝑘
𝐵

∑𝐵
𝑏=1 ∇𝜙 MSE(𝜙; 𝑠

(𝑚′
𝑏,𝑘

)
𝑡 ′
𝑏,𝑘

, 𝑅
(𝑚′

𝑏,𝑘
)

𝑡 ′
𝑏,𝑘

) ,

with MSE as in (3), (𝑡′
𝑏,𝑘

)1≤𝑏≤𝐵 and (𝑚′
𝑏,𝑘

)1≤𝑏≤𝐵 are
sets of 𝐵 indices drawn uniformly from {0, . . . , 𝑇} and
{1, . . . , 𝑀}. Finally, set 𝜙𝑛+1 = 𝜙𝑛,𝐾 and 𝜙𝑛+1,0 :=
𝜙𝑛,𝐾 .

Return the updated parameters 𝜃𝐾 , 𝜙𝐾 .

𝐽 using a surrogate objective 𝐿 (𝜃) ≔ 𝐿 (𝜃; 𝜗, 𝑠, 𝑎, 𝐴), designed
to restrain policy updates using a clipping mechanism,

𝐿 (𝜃) = min
(
𝜋𝜃 (𝑠,𝑎)
𝜋𝜗 (𝑠,𝑎) 𝐴, clip

(
𝜋𝜃 (𝑠,𝑎)
𝜋𝜗 (𝑠,𝑎) , 1 − 𝜖, 1 + 𝜖

)
𝐴

)
, (2)

where 𝜗, 𝜃 ∈ Θ are estimates of the actor parameters, (𝑠, 𝑎) ∈
S × A are the collected state and action, 𝐴 ∈ R is an estimate
of the advantage related to these state and action, computed
using generalized advantage estimation [9, 22], and for 𝑥 ∈
R, the clipping operator clip(𝑥, 1 − 𝜖, 1 + 𝜖) = min(max(1 −
𝜖, 𝑥), 1+ 𝜖) (see [7, Eq. 7, p. 3]) guarantees that the computed
value remains within the interval [1− 𝜖, 1+ 𝜖]. To estimate the
parameters 𝜃 of the actor, FedPPO relies on a critic function
V̂𝜙 : S → R, parameterized by 𝜙, that estimates the reward to-
go 𝑅𝑡 . Alike the actor, it is computed using stochastic gradient
descent on the mean squared error

MSE(𝜙; 𝑠𝑡 , 𝑅𝑡 ) := (𝑅𝑡 − V̂𝜙 (𝑠𝑡 ))2 , (3)

averaged over the 𝑀 collected trajectories {𝜏 (𝑚) }𝑀
𝑚=1. In

summary, at each communication round 𝑛 ∈ N, FedPPO
performs the following operations.
1) Local Data Collection: for each agent 𝑐 ∈ {1, . . . , 𝑁},

collect 𝑀 trajectories 𝜏 (𝑐,𝑛) = {(𝑠 (𝑐,𝑛,𝑚)
𝑡 , 𝑎

(𝑐,𝑛,𝑚)
𝑡 ) : 𝑡 ∈

{0, . . . , 𝑇}}𝑀
𝑚=1 by interacting with the environment using

the current policy 𝜋𝜃𝑛 . Compute the estimated reward-
to-go 𝑅 (𝑐,𝑛) = {𝑅 (𝑐,𝑛,𝑚)

𝑡 : 𝑡 ∈ {0, . . . , 𝑇}}𝑀
𝑚=1 and

generalized advantage estimators 𝐴(𝑐,𝑛) = {𝐴(𝑐,𝑛,𝑚)
𝑡 : 𝑡 ∈

{0, . . . , 𝑇}}𝑀
𝑚=1 with the current parameter of the critic 𝜙𝑛.

2) PPO Update: for every local iteration ℎ = 0, . . . , 𝐻 − 1,
• Perform local PPO Updates: For each agent 𝑐 ∈ [𝑁],

update the parameters 𝜃 (𝑐)
𝑛,ℎ+1, 𝜙

(𝑐)
𝑛,ℎ+1 by running

STEP(𝜃𝑛,ℎ, 𝜙𝑛,ℎ;𝐾, 𝐵, 𝜏 (𝑐)𝑛 , 𝐴
(𝑐,𝑛), 𝑅 (𝑐,𝑛), 𝛼 (𝑐,𝑛,ℎ), 𝜂 (𝑐,𝑛,ℎ) ) ,



Fig. 1. Examples of the three traffic environments: countryside (left), highway
(middle), and urban (right). The platoon involves a Follower (blue) and a
Leader (orange), with background traffic (green). Countryside routes include
multiple hairpin bends; highways are straightforward lines with good visibility;
and urban routes is a grid layout with buildings that restrict the field of sight.

with 𝐾 local epochs, batch size 𝐵 ≤ 𝑀𝑇 , learning
rate schedule 𝛼 (𝑐,𝑛,ℎ) = {𝛼 (𝑐,𝑛,ℎ)

𝑘
}𝐾−1
𝑘=0 for actor and

𝜂 (𝑐,𝑛,ℎ) = {𝜂 (𝑐,𝑛,ℎ)
𝑘

}𝐾
𝑘=0 for critic.

• Communication round: Each agent sends its updated
parameters for actor and critic networks to the central
server, which aggregates them as

𝜃𝑛+1 = 1
𝑁

∑𝑁
𝑐=1 𝜃

(𝑐)
𝑛,𝐻

, 𝜙𝑛+1 = 1
𝑁

∑𝑁
𝑐=1 𝜙

(𝑐)
𝑛,𝐻

.

In the remainder of this paper, we apply this algorithm to the
joint channel selection task in vehicular networks.

IV. FedDRL for V2X Channel Selection

In this section, we apply our framework to the joint channel
selection task. We start by describing the joint channel selec-
tion problem together with the various setups of agents. Then,
we evaluate the performance of FedDRL in terms of training
speed and study the reliability of the learned policies.

A. Channel selection use-case
In the joint channel selection task, vehicles aim to optimize

vehicle-to-vehicle communication by using a combination of
access points. We consider three access points, that have to
be combined to ensure reliable communication in congested
roads: IEEE 802.11p Dedicated Short-Range Communications
(DSRC) and Visible Light Communication with both head
(VLC-H) and tail lights (VLC-T) [6]. These access points have
different characteristics: DSRC is energy-intense, but allows
radio communication in all directions; whereas VLC, based
on visible LED light, is limited to direct line-of-sight, but
consumes significantly less energy. The fundamental challenge
of this channel selection task is that, in many scenarios
(e.g., congested roads), no single technology allows for reliable
communication. Vehicles must then combine multiple access
points to ensure messages are properly transmitted.

In the following, we explore scenarios where a vehicle,
the Follower follows another one, the Leader, and aims
to choose the right channels to communicate with the latter.
This problem can be formulated as an RL task, where the
MDP is dictated by the road and surrounding vehicles, and
the observation and actions spaces are defined as follows:
• The state is a tuple 𝑠 = (𝑠pos, 𝑠net, 𝑠env, 𝑠action), where
𝑠pos comprises five values: the relative distances between
vehicles in the 𝑥 and 𝑦 directions, the cosine and sine of
the angle of the vector pointing from the Leader to the
Follower (in the coordinate system of the former), and the

TABLE I
Characteristics of platoon vehicles and background traffic.

“Density” is the number of vehicles entering the road per hour.

Parameter Countryside Highway Urban

Speed of vehicles ∼ 20 (m/s) ∼ 30 (m/s) ∼ 15 (m/s)
Background traffic density 0 − 2000 0 − 2000 0 − 2000

agent’s speed. 𝑠net denotes the Signal-to-Interference-plus-
Noise Ratio (SINR) associated with frames received through
each of the three technologies. 𝑠env represents the traffic
environment using one-hot encoding, with categories such
as urban, countryside, and highway, as well as the placement
of the DSRC antenna. 𝑠action refers to the action taken at the
previous time step, also encoded using one-hot encoding.
The SINR is calculated by the receiving vehicle considering
all incoming signals related to a specific technology.

• The action corresponds to a combination of technologies,
ranging from 0 (no transmission) to 7 (all technologies):
no transmission, DSRC, VLC-H, DSRC + VLC-H, VLC-T,
DSRC + VLC-T, VLC-H + VLC-T, and all technologies.

• The reward function is defined by the formula:

𝑟 (𝑠, 𝑎, 𝜉) = 𝜉 − 𝐶 (𝑎) − 𝛿(𝑠action, 𝑎) ,

where 𝜉 takes values 1 if the message is received success-
fully and 0 otherwise, 𝐶 (𝑎) represents the cost associated
with action 𝑎 (set to 0.1 for VLC technologies and 0.5
for DSRC), and 𝛿(𝑠action, 𝑎) penalizes action switching:
𝛿(𝑠action, 𝑎) is 0 if 𝑎 matches the previous action 𝑠action, and
0.01 otherwise. This choice of reward is guided by the idea
of maximizing successful message transmission at minimal
cost while minimizing the frequency of technology switches.

B. Heterogeneity
A key asset of FedDRL is that different vehicles, that evolve

in different environments, observe a more diverse part of the
state space. They evolve in heterogeneous environments, and
may thus face diverse traffic environments with a variety of
channel conditions. This allows to compensate for the typically
slow progress of single-agent RL. In the subsequent para-
graphs, we describe three different sources of heterogeneity.

Vehicular environments. We use three different physical
environments (Figure 1) that replicate specific driving con-
ditions and interference patterns: rural, urban, and highway
settings. The rural and urban environments present challenges
for VLC: in rural settings, tight turns block direct light; while
in urban areas, physical barriers such as buildings block the
line of sight between vehicles.

Background traffic. Background traffic influences commu-
nication and alters signal propagation. Various scenarios of
background traffic can be encountered, differing in density
and direction: on highways, vehicles move in both the same
and opposite directions, while in rural and urban areas, they
predominantly travel in opposite directions.

Antennas. The choice of antenna significantly impacts
communication channel quality. Antennas are classified based
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Fig. 2. Cumulative rewards as a function of the number of episodes in
non-federated and federated settings across three different traffic scenarios:
highway, urban, and countryside.

on their radiation characteristics, and each mounting option
presents specific advantages and challenges affecting factors
like signal obstruction, reflection, and overall coverage. We
use three different antenna placements for the radio channel: a
monopole antenna mounted on the vehicle’s roof, a panorama
monopole antenna positioned on the vehicle’s glass roof [4],
and patch antennas mounted on the side mirrors [2].

C. Simulator
Our federated simulation framework is based on OMNeT++

[3], Veins [10], and SUMO [8] to manage communication
protocols in vehicular networks. OMNeT++ simulates the
network and protocol development, and Veins provides models
for IEEE 802.11-based communication in Vehicular Ad Hoc
Networks (VANETs) and Intelligent Transportation Systems
(ITS). We refer to [10] for details on Veins. We use Veins-Gym
[14] to interface this simulator with RL algorithms, allowing
to perform RL in VANET scenarios using the OpenAI Gym
interface. SUMO adds realistic urban mobility scenarios to
simulations, covering vehicles, bicycles, pedestrians, and more
for comprehensive V2X studies.

D. Results
We now assess the applicability of FedPPO in real-world

scenarios and explore the assets of FedDRL towards reliable
connectivity across diverse contexts.

To serve as a reference point for comparison with our
federated methodology, we start by studying the performances
of three baseline scenarios. Each of these baselines con-
sists in a single agent, only driving in one specific context.
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Fig. 3. Decisions of the follower in the countryside environment based on
the relative distance between Leader and the Follower. From upper left:
(i) policy learned on the highway without background traffic, (ii) federated
policy without background traffic, (iii) baseline policy learned on the highway
with background traffic, (iv) federated policy with background traffic.

Then, agents who predominantly operate in one environment
(e.g., countryside), generally excel there but face difficulties in
other unfamiliar contexts. Federating the training with other
diverse user experiences proves advantageous, allowing agents
to improve their performance across a spectrum of scenarios.
In the following, we study a practical case involving 30 agents,
evenly distributed across urban, highway, and countryside en-
vironments. Each agent predominantly operates in one setting,
but occasionally encounters others, mimicking realistic driving
patterns. Antenna types and background traffic levels are uni-
formly distributed among clients. Vehicles interact during 10-
second-long simulations, during which the Follower selects
the channels used to communicate with the Leader, while
other background vehicles create interference and noise. Each
vehicles conducts multiple of such episodes, allowing for the
simulation of a variety of settings.

Cumulative Rewards. In Figure 2, we show the cumulative
rewards for the three centralized baselines, and for our feder-
ated methodology. In the three baseline scenarios, reaching
a stable policy requires more iterations: the rewards remain
unstable, even after several hundred episodes. In stark contrast
with this baseline, the rewards obtained by the federated
vehicles are less volatile and do not exhibit significant drops.
This highlights the fact that FedDRL allows to reduce the
amount of noise that is observed during the training.

Learned Policies. To illustrate the policies learned through
FedDRL versus the non-federated baselines, we build a coun-
tryside road with four sharp corners; a setting challenging



TABLE II
Reliability of the different baselines and of the federated policy

computed on the different types of environments.

Urban Country Highway All

Trained on urban 0.656 0.738 0.862 0.752
Trained on country 0.654 0.784 0.974 0.804
Trained on highway 0.655 0.740 0.975 0.790

Trained on all (federated) 0.724 0.923 0.974 0.874

the VLC technology. Vehicles interact for about six minutes
in this setup, which allows to study the learned policies in
various contexts. We consider two scenarios: one with minimal
background traffic and another with high traffic density.

As shown in Figure 3, the FedPPO global model prioritizes
VLC-H whenever possible. In narrow corners, it switches to
the radio channel, often combining DSRC and VLC-H. This
adjustment occurs because the algorithm needs more training
to understand transmission cost differences. On the other hand,
testing a policy from a single agent trained in a highway
scenario reveals difficulties in corner navigation due to limited
exposure of that situations in that environment.

Reliability. Another crucial aspect is communication reli-
ability, measured by the Packet Delivery Ratio. As shown in
Table II, single agents perform well in their environments but
struggle with different traffic contexts. In contrast, the global
FedPPO model shows robust performance across all contexts.
Despite this, FedPPO does not meet QoS requirements, and
expanding the action space could help improve this.

V. Conclusion

In this article, we demonstrated that the federated Proxi-
mal Policy Optimization (FedPPO) algorithm may enhance
decision-making in the joint channel selection problem in V2X
communications. We showed that policies learned for channel
selection using FedPPO lead to better communication reliabil-
ity and efficiency in V2X networks, showing that FedPPO is
a promising framework for optimizing V2X communication.
Indeed, by combining observations from multiple vehicles,
FedPPO learns policies that work in a wider range of scenarios,
while reducing the noise in the observed cumulative rewards
when compared to non-federated approaches.

However, there are limitations affecting the performance
and implementation of V2X technology with Federated Learn-
ing. A promising direction lies in extending our simulator
to include more access points (e.g., 5G [13], or other cel-
lular network technologies). While our preliminary results,
including DSRC and VLC, show promising results, real-life
vehicles often embed many more access points, requiring to
learn more complex policies. Including additional real-world
maps, modeling on existing roads, cities, and diverse traffic
conditions, for instance, [5], is another promising direction.
Indeed, incorporating this level of realism would provide even
more accurate and meaningful insights toward improving V2X
communication systems.

Overcoming these limitations is a very promising direction
for further research. This would allow to further explore the
potential of FedDRL in V2X applications. This perspective
is even more so promising, as other FedDRL algorithms
specific to V2X could be developed, integrating other baselines
based on existing heuristics to further improve efficiency and
reliability.
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