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Federated Linear Stochastic Optimization

Take N matrices Āc’s and vectors b̄c’s
Goal: solve collaboratively( 1

N

N∑
c=1

Āc
)
θ⋆ =

1

N

N∑
c=1

b̄c

assuming θ⋆ is unique, and Āc and b̄c are split among N

agents, with stochastic oracles Ac(Zc
t,h) and bc(Zc

t,h).
Oracles are unbiased with bounded variance, and for
η < η∞, there exists a > 0 such that

E[∥Id− ηAc(Zc
t,h)∥2] ≤ 1− ηa

Applications: federated TD learning, linear regression...

Existing Method: FedLSA Algorithm

Input: η > 0, θ0 ∈ Rd, T,N,H > 0

for t = 0 to T − 1 do
Initialize θt,0 = θt
for c = 1 to N do

for h = 1 to H do
Observe Zc

t,h and perform local update:

θt,h = θct,h−1 − η(Ac(Zc
t,h)θ

c
t,h−1 − bc(Zc

t,h))

Aggregate local updates θt+1 =
1
N

∑N
c=1 θ

c
t,H

We propose a new analysis of FedLSA, inspired by Wang et
al., 2022 and Samsonov et al., 2024

We show that local training with control variates in federated LSA
accelerates while preserving the linear speed-up

Parameter setting required to reach E
[
∥θT − θ⋆∥2

]
≤ ϵ2 for different algorithms/analyses
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Proposed Method: SCAFFLSA algorithm

[Inspired by Mishchenko et al., 2022’s ProxSkip!]

Input: η > 0, θ0, ξ0 ∈ Rd, T,N,H > 0

for t = 0 to T − 1 do
Initialize θt,0 = θt
for c = 1 to N do

for h = 1 to H do
Observe Zc

t,h and perform local update:

θt,h = θct,h−1 − η(Ac(Zc
t,h)θ

c
t,h−1 − bc(Zc

t,h)− ξct )

Aggregate local updates θt+1 =
1
N

∑N
c=1 θ

c
t,H

Update control variates: ξct+1 = ξct +
1
ηH(θt+1 − θct,H)
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Numerical Study [on heterogeneous Garnet]

SCAFFLSA does not have bias when H increases!
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Both algorithms have linear speed-up, FedLSA is biased...
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