SCAFFLSA: Taming Heterogeneity in Federated Stochastic Approximation **To appear in NeurIPS-2024**

Paul Mangold ¹, Sergey Samsonov ², Safwan Labbi ¹, Ilya Levin ², Reda Alami ³, Alexey Naumov ², Eric Moulines ¹ ¹Ecole Polytechnique, France ²HSE University, Russia ³Technology Innovation Institute, UAE

Federated Linear Stochastic Optimization

Take N matrices $\bar{\mathbf{A}}^{c}$'s and vectors $\bar{\mathbf{b}}^{c}$'s Goal: solve collaboratively

$$\left(\frac{1}{N}\sum_{c=1}^{N}\bar{\mathbf{A}}^{c}\right)\theta_{\star} = \frac{1}{N}\sum_{c=1}^{N}\bar{\mathbf{b}}^{c}$$

Existing Method: FedLSA Algorithm

Input: $\eta > 0, \theta_0 \in \mathbb{R}^d, T, N, H > 0$ for t = 0 to T - 1 do Initialize $\theta_{t,0} = \theta_t$ for c = 1 to N do for h = 1 to H do

assuming θ_{\star} is unique, and \mathbf{A}^{c} and \mathbf{b}^{c} are split among N agents, with stochastic oracles $\mathbf{A}^{c}(Z_{t,h}^{c})$ and $\mathbf{b}^{c}(Z_{t,h}^{c})$. Oracles are unbiased with bounded variance, and for $\eta < \eta_{\infty}$, there exists a > 0 such that

 $\mathbb{E}[\|\mathbf{Id} - \eta \mathbf{A}^{c}(Z_{t,h}^{c})\|^{2}] \leq 1 - \eta a$

Applications: federated TD learning, linear regression...

Observe $Z_{t,h}^c$ and perform local update: $\theta_{t,h} = \theta_{t,h-1}^c - \eta (\mathbf{A}^c(Z_{t,h}^c)\theta_{t,h-1}^c - \mathbf{b}^c(Z_{t,h}^c))$

Aggregate local updates $\theta_{t+1} = \frac{1}{N} \sum_{c=1}^{N} \theta_{t,H}^{c}$

We propose a new analysis of FedLSA, inspired by Wang et al., 2022 and Samsonov et al., 2024

We show that local training with control variates in federated LSA accelerates while preserving the linear speed-up

Parameter setting required to reach $\mathbb{E}\left[\|\theta_T - \theta_\star\|^2\right] \leq \epsilon^2$ for different algorithms/analyses

Algorithm	Communication T	Local updates H	Sample complexity TH
FedLSA [Existing analysis Doan, 2020]	$\mathcal{O}\left(\frac{N^2}{a^2\epsilon^2}\log\frac{1}{\epsilon}\right)$	1	$\mathcal{O}\left(\frac{N^2}{a^2\epsilon^2}\log\frac{1}{\epsilon}\right)$
	(0 (1 1 1))	(n(1))	(0 (1 1 1 1))

FedLSA [Our analysis]

Scaffnew [Extended to LSA]

Scafflsa [Our analysis]

Proposed Method: SCAFFLSA algorithm

[Inspired by Mishchenko et al., 2022's ProxSkip!] **Input:** $\eta > 0, \, \theta_0, \xi_0 \in \mathbb{R}^d, \, T, N, H > 0$ for t = 0 to T - 1 do Initialize $\theta_{t,0} = \theta_t$ for c = 1 to N do for h = 1 to H do Observe $Z_{t,h}^c$ and perform local update: $\theta_{t,h} = \theta_{t,h-1}^c - \eta (\mathbf{A}^c(Z_{t,h}^c)\theta_{t,h-1}^c - \mathbf{b}^c(Z_{t,h}^c) - \xi_t^c)$ Aggregate local updates $\theta_{t+1} = \frac{1}{N} \sum_{c=1}^{N} \theta_{t,H}^{c}$

Numerical Study [on heterogeneous Garnet]

Both algorithms have linear speed-up, FedLSA is biased...

Update control variates: $\xi_{t+1}^c = \xi_t^c + \frac{1}{nH}(\theta_{t+1} - \theta_{t,H}^c)$

References

- J. Wang et al. "On the unreasonable effectiveness of federated averaging with heterogeneous data". In: *arXiv* (2022).
- S. Samsonov et al. "Improved High-Probability Bounds for the Temporal Difference Learning Algo-|2| rithm via Exponential Stability". In: The Thirty Seventh Annual Conference on Learning Theory. PMLR. 2024, pp. 4511–4547.
- [3] T. T. Doan. "Local stochastic approximation: A unified view of federated learning and distributed multi-task reinforcement learning algorithms". In: arXiv (2020).
- K. Mishchenko et al. "Proxskip: Yes! local gradient steps provably lead to communication acceleration! |4| finally!" In: ICML. PMLR. 2022, pp. 15750–15769.

$$-\eta = 0.001 \quad --- \eta = 0.01 \quad --- \eta = 0.1 \quad --- \eta = 1 \quad ---- \text{FedLSA} \quad --- \text{SCAFFLSA}$$

