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Refresher on Reinforcement Learning

In RL, agent:

e take actions in an environment
e collect reward after their action
e learn to obtain better rewards
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Refresher on Reinforcement Learning

Environment:

e set of states S reward R 3gen:fs

. t state S; action
e set of actions A Cew state ) s
e rewards, typically in [0, 1] Sei1~ P(:|S:, Ar) p— ¢~ (-|S)

e transition P(-|s,a) for s,ae S x A

Goal: learn 7 to get good rewards



Example: CartPole

Goal: keep the stick up
e state: angle of the stick

e reward: 1 if still up, O otherwise

M — Idea: run episodes of length H = 250
O O — adapt policy after each episode




Example: CartPole

Cumulative reward, 1 cart
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Two Big Questions in Reinforcement Learning

1. Policy evaluation: evaluate if a policy is good

2. Policy optimization: find a good policy



Two Big Questions in Reinforcement Learning

1. Policy evaluation: evaluate if a policy is good

take a policy ™
goal: approximate the expected sum of reward for each s € S

V(s) = E[Zth(St,AtNSO =
t=0

where A; ~ 7(+|S;) and S 1 ~ P(+|S:, Ar)

2. Policy optimization: find a good policy



Two Big Questions in Reinforcement Learning

1. Policy evaluation: evaluate if a policy is good
2. Policy optimization: find a good policy
find one of the best policy (according to value), for all s € S

m(+|s) € argmax V™ (s)



1. Policy Evaluation: TD Learning



1. Policy Evaluation: TD Learning

State Value function:
50 = S]

\/(7r)
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1. Policy Evaluation: TD Learning

State Value function:
50 = S]

Expanding the first step, we obtain the Bellman equation:
V(s) =E[R(s, Ao)l + 7> _m(als)E | > v R(S:. At)]
acA t=1
= E[R(s, Ao)] + 7 )_(als) D P(s'ls, a)V™(s))

aceA s'eS

V(s

Z’YtR 5t7




1. Policy Evaluation: TD Learning

The function V(™) satisfies the Bellman equation

vV — R — 4PV =0



1. Policy Evaluation: TD Learning

The function V(™) satisfies the Bellman equation

VD R — 4PV =0 (%)

Temporal difference learning finds V(™) by solving this equation:

e take action A; ~ 7(-|S;)
e receive reward R(S;, A;) and S;i1 ~ P(+|St, Ar)
o update the current estimate V™ with the error from (%)

V(S = VE(Se) — a(VD(S:) — R(Se, A) +7PVEV(S))

=> eventually, Vt(w) converges to V(™)



2. Policy Optimization: Policy Gradient Method



2. Policy Optimization: Policy Gradient Method

The value function is
Zth St Ar) | So = s]

= nytZZ]P(St =s,A: = a)R(s,a)

t=0 se€S acA

V(W)

Parameterize the policy my by € R>A, and update
Oer1 = 0, + aV,y V™)

=> the policy 7y, converges to an optimal policy 7,



The problem of Reinforcement Learning:

All these methods require a lot of samples to converge
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from John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv
preprint arXiv:1707.06347 (2017)
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Federated Reinforcement Learning
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Federated Reinforcement Learning

Idea: collaborate to solve these problems together faster

agent 1
o s
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Example: CartPole

Cumulative reward, 1 cart vs. 10 carts

o 100 200 300 400
episode
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Question:

How does RL benefit from federated learning?

14



Question:
How does RL benefit from federated learning?
— Can it accelerate the training?

— How to handle heterogeneity?

— How to reduce communications?
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Heterogeneity in Reinforcement Learning

Take N agents with transition kernels P(¢) and rewards r()

Two types of heterogeneity, for ¢ # ¢’ € {1,..., N}

— transition kernel heterogeneity:
fors,a,8' € S x A x S, P(s'|s,a) # P)(s'|s, a)

— rewards heterogeneity
fors,a€ S x Ax S, RE(s,a) # R()(s, a)
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1. Federated Policy Evaluation
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1. Federated Policy Evaluation

Federated temporal difference learning method, with shared policy :

e for each agent c=1to N
e take action A( )~ (- \S(C )
e receive reward R C)(St ,A(C)) and Sfi)l (C)(-ISt(C),Agc))
(c,m)

e update the current estimate Vt with the error from (%)

Ve(517) = Ve(819) — a7 (57) = RS, A9) + 4 POTT (7))

t11
e aggregate Vt(j::)l =3 LSV Vv, (e)
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1. Federated Policy Evaluation

Federated temporal difference learning method, with shared policy :

e for each agent c=1to N
e take action A( )~ (- \5
e receive reward R C)(St ,A(C)) and Sfi)l (C)(-ISt(C),Agc))

(c,m)

e update the current estimate Vt with the error from (%)

Ve(517) = Ve(819) — a7 (57) = RS, A9) + 4 POTT (7))

t11
e aggregate Vt(ﬁ =3 LSV Vv, (e)

Theorem: this algorithm converges to a solution of
N

N
7 %Z Rle) %Z VPO _ g
c=1

c=1
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1. Federated Policy Evaluation

We show that this algorithm

1. converges even with local training
2. can benefit from control variate to mitigate heterogeneity drift

3. accelerates the learning (N times less samples per agent)

= Problem: the solution to V(~ - N L R — L Z L POV =0

...may not be the right value function for each agent

...unless agents are similar enough!

17



2. Federated Policy Optimization
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2. Federated Policy Optimization

What about federated policy gradient?

N
& C,T
Ors1 :9t+N;V9V( 0c)
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2. Federated Policy Optimization

What about federated policy gradient?

N
Q
9t+1 = 01- + N Z Vg V(C’ﬂ-et)

c=1

Some remarks about regularity: each V(¢7) is:

e [-smooth for some L >0
e satisfies a non-uniform tojasiewicz property for 1 : R? — R:

[V Ve = 2p(6) (V1) = viEm)? (*
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2. Federated Policy Optimization

What about federated policy gradient?

N
a
— — (Cvﬂ- t)
Ory1 = 0¢ + N CE—1 Vo Vicmo

Some remarks about regularity: each V(¢7) is:

e [-smooth for some L >0
e satisfies a non-uniform tojasiewicz property for 1 : R? — R:

[V Ve = 2p(6) (V1) = viEm)? (*

Problem: due to heterogeneity, %Z'CVZI veme) does not satisfy (x)
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2. Federated Policy Optimization

With p = min; p4(6;), we prove that

1 N () ( ) N ( ) 771/2 C1/2
§ : C,x E /(e < § c, Ty,
N v v [L?]TN ’ ) “1/2N1/2 ”1/2

c=1

where ( # 0 if agents are heterogeneous



On the Impact of Heterogeneity on Federated RL

We can measure heterogeneity by

—+ transition heterogeneity: €p = SUP.cr 5 acsral PO(:|s, @) = PLI(-[s, a) | rv

—+ rewards heterogeneity €, = SUp.or ¢ esxa |R(s,a) — R(€)(s, a)|

Federated error is always of order ep + ¢,

This is due to the fact that objectives are fundamentally mis-aligned
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Conclusion
Federated reinforcement learning is still at its beginning
In this talk, we studied

e a federated TD learning algorithm
e a federated policy gradient algorithm

Contrary to classical FL, there is no “analogy with centralized”
— we necessarily pay heterogeneity somewhere...
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Perspectives

Contrary to classical FL, there is no “analogy with centralized”
— we necessarily pay heterogeneity somewhere...

But there is hope:

e in homogeneous cases, everything works
e under heterogeneity... we should personalize!

In fact, it is the same in federated and decentralized learning :)

22



Thank you!

Works related to this talk:

e Safwan Labbi et al. “On Global Convergence Rates for Federated Policy Gradient under Heterogeneous
Environment”. In: arXiv (2025)

e Safwan Labbi et al. “Federated ucbvi: Communication-efficient federated regret minimization with
heterogeneous agents”. In: AISTATS (2024)

e Lorenzo Mancini et al. “Joint Channel Selection using FedDRL in V2X". In: MECOM. 2024

e Paul Mangold et al. “Scafflsa: Taming heterogeneity in federated linear stochastic approximation and td
learning”. In: NeurlPS (2024)

Thanks to my collaborators on these projects:
Safwan Labbi, Lorenzo Mancini, Eric Moulines, Daniil Tiapkin
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