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Refresher on Reinforcement Learning

In RL, agent:

• take actions in an environment

• collect reward after their action

• learn to obtain better rewards
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Refresher on Reinforcement Learning

Environment:

• set of states S
• set of actions A
• rewards, typically in [0, 1]

• transition P(·|s, a) for s, a ∈ S ×A

agent
state St

env

reward Rt

new state
St+1 ∼ P(·|St ,At)

action

At ∼ π(·|St)

Goal: learn π to get good rewards
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Example: CartPole

Goal: keep the stick up

• state: angle of the stick

• reward: 1 if still up, 0 otherwise

Idea: run episodes of length H = 250
→ adapt policy after each episode
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Example: CartPole

Cumulative reward, 1 cart
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Two Big Questions in Reinforcement Learning

1. Policy evaluation: evaluate if a policy is good

2. Policy optimization: find a good policy
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Two Big Questions in Reinforcement Learning

1. Policy evaluation: evaluate if a policy is good

take a policy π
goal: approximate the expected sum of reward for each s ∈ S

V π(s) = E
[ ∞∑

t=0

γtR(St ,At)|S0 = s
]

where At ∼ π(·|St) and St+1 ∼ P(·|St ,At)

2. Policy optimization: find a good policy
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Two Big Questions in Reinforcement Learning

1. Policy evaluation: evaluate if a policy is good

2. Policy optimization: find a good policy

find one of the best policy (according to value), for all s ∈ S

π⋆(·|s) ∈ arg max
π

V π(s)
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1. Policy Evaluation: TD Learning

State Value function:

V (π)(s) = E

[
∞∑
t=0

γtR(St ,At)

∣∣∣∣ S0 = s

]

Expanding the first step, we obtain the Bellman equation:

V (π)(s) = E[R(s,A0)] + γ
∑
a∈A

π(a|s)E

[
∞∑
t=1

γt−1R(St ,At)

]
= E[R(s,A0)] + γ

∑
a∈A

π(a|s)
∑
s′∈S

P(s ′|s, a)V (π)(s ′)
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1. Policy Evaluation: TD Learning
The function V (π) satisfies the Bellman equation

V (π) − R − γPV (π) = 0 (⋆)

Temporal difference learning finds V (π) by solving this equation:

• take action At ∼ π(·|St)

• receive reward R(St ,At) and St+1 ∼ P(·|St ,At)

• update the current estimate V̂
(π)
t with the error from (⋆)

V̂
(π)
t+1(St) = V̂

(π)
t (St) − α(V

(π)
t (St) − R(St ,At) + γPV

(π)
t (St))

⇒ eventually, V̂
(π)
t converges to V (π)
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2. Policy Optimization: Policy Gradient Method

The value function is

V (π)(s) = E

[
∞∑
t=0

γtR(St ,At)

∣∣∣∣ S0 = s

]

=
∞∑
t=0

γt
∑
s∈S

∑
a∈A

P(St = s,At = a)R(s, a)

Parameterize the policy πθ by θ ∈ RSA, and update

θt+1 = θt + α∇θV
(πθ)

⇒ the policy πθt converges to an optimal policy π⋆
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The problem of Reinforcement Learning:

All these methods require a lot of samples to converge

from John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv
preprint arXiv:1707.06347 (2017)
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Federated Reinforcement Learning
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Federated Reinforcement Learning
Idea: collaborate to solve these problems together faster

agent 1
s
(1)
t

env 1

agent 2
s
(2)
t

env 2

· · ·

agent n
s
(n)
t

env n

r
(1)
t

S
(1)
t+1

a
(1)
t

r
(2)
t

S
(2)
t+1

a
(2)
t

r
(n)
t

S
(n)
t+1

a
(n)
t

global policycentral server
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Example: CartPole

Cumulative reward, 1 cart vs. 10 carts
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Question:

How does RL benefit from federated learning?

→ Can it accelerate the training?

→ How to handle heterogeneity?

→ How to reduce communications?
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Heterogeneity in Reinforcement Learning

Take N agents with transition kernels P (c) and rewards r (c)

Two types of heterogeneity, for c ̸= c ′ ∈ {1, . . . ,N}

→ transition kernel heterogeneity:

for s, a, s ′ ∈ S ×A× S, P (c)(s ′|s, a) ̸= P (c ′)(s ′|s, a)

→ rewards heterogeneity

for s, a ∈ S ×A× S, R (c)(s, a) ̸= R (c ′)(s, a)
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1. Federated Policy Evaluation

Federated temporal difference learning method, with shared policy π:

• for each agent c = 1 to N
• take action A

(c)
t ∼ π(·|S (c)

t )

• receive reward R(c)(S
(c)
t ,A

(c)
t ) and S

(c)
t+1 ∼ P(c)(·|S (c)

t ,A
(c)
t )

• update the current estimate V̂
(c,π)
t with the error from (⋆)

V̂
(c,π)
t+1 (S

(c)
t ) = V̄

(π)
t (S

(c)
t )− α(V̄

(π)
t (S

(c)
t )− R(c)(S

(c)
t ,A

(c)
t ) + γP(c)V̄

(π)
t (S

(c)
t ))

• aggregate V̄
(π)
t+1 = 1

N

∑N
c=1 V̂

(c,π)
t

Theorem: this algorithm converges to a solution of

V̄ (π) − 1

N

N∑
c=1

R (c) − 1

N

N∑
c=1

γP (c)V̄ (π) = 0
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1. Federated Policy Evaluation

We show that this algorithm

1. converges even with local training

2. can benefit from control variate to mitigate heterogeneity drift

3. accelerates the learning (N times less samples per agent)

⇒ Problem: the solution to V̄ (π) − 1
N

∑N
c=1 R

(c) − 1
N

∑N
c=1 γP

(c)V̄ (π) = 0

...may not be the right value function for each agent

...unless agents are similar enough!
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2. Federated Policy Optimization

What about federated policy gradient?

θt+1 = θt +
α

N

N∑
c=1

∇θV
(c,πθt )

Some remarks about regularity: each V (c,πθ) is:

• L-smooth for some L > 0

• satisfies a non-uniform  Lojasiewicz property for µ : Rp → R:

∥∇πV
(c,πθ)∥2 ≥ 2µ(θ)

(
V (c,⋆) − V (c,πθ))2 (⋆)

Problem: due to heterogeneity, 1
N

∑N
c=1 V c,πθ) does not satisfy (⋆)
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2. Federated Policy Optimization

With µ = mint µ(θt), we prove that

1

N

N∑
c=1

V (c,⋆) − EV (c,πt) ≲
1

µηT

1

N

N∑
c=1

(V (c,⋆) − V (c,πθ0
)) +

η1/2

µ1/2N1/2
+

ζ1/2

µ1/2

where ζ ̸= 0 if agents are heterogeneous
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On the Impact of Heterogeneity on Federated RL

We can measure heterogeneity by

→ transition heterogeneity: ϵP = supc ̸=c ′,s,a∈S×A|P (c)(·|s, a) − P (c ′)(·|s, a)∥TV
→ rewards heterogeneity ϵr = supc ̸=c ′,s,a∈S×A |R (c)(s, a) − R (c ′)(s, a)|

Federated error is always of order ϵP + ϵr

This is due to the fact that objectives are fundamentally mis-aligned
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Conclusion

Federated reinforcement learning is still at its beginning

In this talk, we studied

• a federated TD learning algorithm

• a federated policy gradient algorithm

Contrary to classical FL, there is no “analogy with centralized”
→ we necessarily pay heterogeneity somewhere...
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Perspectives

Contrary to classical FL, there is no “analogy with centralized”
→ we necessarily pay heterogeneity somewhere...

But there is hope:

• in homogeneous cases, everything works

• under heterogeneity... we should personalize!

In fact, it is the same in federated and decentralized learning :)
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Thank you!

Works related to this talk:

• Safwan Labbi et al. “On Global Convergence Rates for Federated Policy Gradient under Heterogeneous
Environment”. In: arXiv (2025)

• Safwan Labbi et al. “Federated ucbvi: Communication-efficient federated regret minimization with
heterogeneous agents”. In: AISTATS (2024)

• Lorenzo Mancini et al. “Joint Channel Selection using FedDRL in V2X”. In: MECOM. 2024

• Paul Mangold et al. “Scafflsa: Taming heterogeneity in federated linear stochastic approximation and td
learning”. In: NeurIPS (2024)

Thanks to my collaborators on these projects:
Safwan Labbi, Lorenzo Mancini, Eric Moulines, Daniil Tiapkin

23


