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I. Federated Averaging
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Federated Averaging1 x⋆ ∈ argminx∈Rd
1
N

∑N
c=1 EZ [Fc(x ;Z )]

At each global iteration

• For c = 1 à N in parallel

– Receive x (t), set x
(t,0)
c = x (t)

– For h = 0 to H − 1

x
(t,h+1)
c = x

(t,h)
c − γ∇Fc(x

(t,h)
c ;Z

(t,h+1)
c )

• Aggregate local models

x (t+1) = 1
N

∑N
c=1 x

(t,H)
c

With deterministic gradients:
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1B. McMahan et al. “Communication-efficient learning of deep networks from decentralized data”. In: AISTATS. 2017.
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Classical analyses of this algorithm
(For L-smooth, µ-strongly convex functions)

Choose your favorite heterogeneity measure

• first-order1: ζ = 1
N

∑N
c=1

∥∥∇fc(x
⋆)−∇f (x⋆)

∥∥2

• second-order2: ζ = 1
N

∑N
c=1

∥∥∇2
c f (x

⋆)−∇2f (x⋆)
∥∥2

• average drift3: ζ =
∥∥ 1
NH

∑N
c=1

∑H−1
h=0 ∇f (x

(h)
c )−∇f (x⋆)

∥∥2

Show convergence to a neighborhood of x⋆

∥x (T ) − x⋆∥2 ≲ (1− γµ)HT∥x (0) − x⋆∥2 + χ(γ,H, ζ) (for some function χ)

1X. Lian et al. “Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel SGD”. In: NeurIPS (2017).

2A. Khaled and C. Jin. “Faster federated optimization under second-order similarity”. In: arXiv (2022).

3J. Wang et al. “On the Unreasonable Effectiveness of Federated Averaging with Heterogeneous Data”. In: TMLR (2024). 4
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H = 2 H = 10 H = 50

FedAvg Global Solution FedAvg's Solution Convergence neighborhood

When the number of local iterations increases, bias incrases

... but the bound is oblivious to problem’s geometry

Remark: It seems that iterates converge in some way?
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FedAvg (with stochastic gradients) converges!1
(For thrice derivable, L-smooth, µ-strongly convex functions)

• FedAvg converges to a stationary distribution π(γ,H)

– denoting x (t) ∼ ψx(t) , we have

W2(ψx(t) ; π
(γ,H)) ≤ (1− γµ)HtW2(ψx(0) ; π

(γ,H))

– where W2 is the second order Wasserstein distance

• FedAvg’s iterates covariance is
• We can now give an exact expansion of the bias

1P. Mangold et al. “Refined Analysis of Constant Step Size Federated Averaging and Federated Richardson-Romberg Extrapolation”. In:
AISTATS. 2025.
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FedAvg (with stochastic gradients) converges!1
(For thrice derivable, L-smooth, µ-strongly convex functions)

• FedAvg converges to a stationary distribution π(γ,H)

• FedAvg’s iterates covariance is
• We can now give an exact expansion of the bias∫

xπ(γ,H)(dx) = x⋆ +
γ(H − 1)

2N

N∑
c=1

∇2f (x⋆)−1
(
∇2fc(x

⋆)−∇2f (x⋆)
)
∇fc(x

⋆)

− γ

2N
∇2f (x⋆)−1∇3f (x⋆)A−1C (x⋆) + O(γ3/2H)

Heterogeneity bias

vanishes when ∇2fc(x
⋆) = ∇2f (x⋆)

or when ∇fc(x
⋆) = ∇f (x⋆)

Stochasticity bias

A = I ⊗∇2f (x⋆) +∇2f (x⋆)⊗ I

C (x⋆) is ∇F Z ’s covariance at x⋆

1P. Mangold et al. “Refined Analysis of Constant Step Size Federated Averaging and Federated Richardson-Romberg Extrapolation”. In:
AISTATS. 2025.
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II. Correcting heterogeneity: Scaffold
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Scaffold1 x⋆ ∈ argminx∈Rd
1
N

∑N
c=1 EZ [Fc(x ;Z )]

At each global iteration

• For c = 1 to N in parallel

– Receive x (t), set x
(t,0)
c = x (t)

– For h = 0 to H − 1

x
(t,h+1)
c = x

(t,h)
c −γ

(
∇Fc(x

(t,h)
c ;Z

(t,h+1)
c )+ξ

(t)
c

)
• Aggregate models, update control variates

x (t+1) = 1
N

∑N
c=1 x

(t,H)
c

ξ
(t+1)
c = ξ

(t)
c + 1

γH (θt,H
c − θ(t+1))
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→ No more heterogeneity bias!

1S. P. Karimireddy et al. “Scaffold: Stochastic controlled averaging for federated learning”. In: ICML. 2020.
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Scaffold also converges !1
(For L-smooth, µ-strongly convex functions with ∇3f (x) bounded by Q)

• Scaffold converges if γHL ≤ 1, towards a distribution π(γ,H)

– denoting x (t) ∼ ψx(t) , we have

W2(ψx(t) ; π
(γ,H)) ≤ (1− γµ)HtW2(ψx(0) ; π

(γ,H))

– where W2 is the second order Wasserstein distance

• Scaffold’s variance is close to FedAvg’s variance

• Scaffold still has some bias

1P. Mangold et al. “Scaffold with Stochastic Gradients: New Analysis with Linear Speed-Up”. In: arxiv preprint. 2025.
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H = 10 H = 20 H = 50

FedAvg Scaffold Global Solution FedAvg's Solution Convergence neighborhood

Scaffold converges to the right point

... and its variance is similar to FedAvg!
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New Convergence Rate for Scaffold
(For L-smooth, µ-strongly convex functions with ∇3f (x) bounded by Q)

E
[
∥x (T ) − x⋆∥2

]
≲

(
1− γµ

4

)HT
{
∥x (0) − x⋆∥2 + 2γ2H2ζ2 +

σ2
⋆

Lµ

}
+

γ

Nµ
σ2
⋆ +

γ3/2Q

µ5/2
σ3
⋆ +

γ3HQ2

µ3
σ4
⋆

where

• σ2
⋆ = E[ 1N

∑N
c=1 ∥∇FZ

c (x⋆)−∇fc(x
⋆)∥2 is the variance at x⋆

• ζ2 = 1
N

∑N
c=1 ∥∇f Zc (x⋆)∥2 measures gradient heterogeneity
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Linear Speed-Up!

As long as N is not too large, one can obtain E
[
∥x (T ) − x⋆∥2

]
≤ ϵ2 with

#grad per client = Õ
( σ2

⋆

Nµ2ϵ2
log

(
1

ϵ

))

12



Conclusion

• FedAvg and Scaffold converge (even with stochastic gradients)

• This allows to derive new analyses for these problems,
with exact first-order expression for bias

• And we proved that Scaffold has:

– variance similar to FedAvg’s variance
– linear speed-up in the number of clients!!
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Thank you!

Check the papers:

• P. Mangold et al. “Refined Analysis of Constant Step Size Federated Averaging
and Federated Richardson-Romberg Extrapolation”. In: AISTATS. 2025

• P. Mangold et al. “Scaffold with Stochastic Gradients: New Analysis with Linear
Speed-Up”. In: arxiv preprint. 2025

Find this presentation on my website:

• https://pmangold.fr/research.php?page=talks

14

https://pmangold.fr/research.php?page=talks

