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Federated Learning

Collaborative optimization problem
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Federated Learning

Problem: data is heterogeneous, communication is expensive



|. Federated Averaging



x* € argmingeps £ SN EZ[F(x; 2)]

Federated Averaging®

At each global iteration

e Forc=1a N in parallel
— Receive x(t), set Xét’o) = x(®)
— Forh=0to H-1
X(t,h+1) o Xét’h) . ’VVFC(Xét’h); Zc(t,h+1))

c =

e Aggregate local models
(t+1) — % Z:ICV:1 th,H)

1B. McMahan et al. “Communication-efficient learning of deep networks from decentralized data”. In: AISTATS. 2017.



Federated Averaging!  x € argmin.ce § YIL, EzlFe(x; 2)]

At each global iteration With deterministic gradients:

N . -3
e Forc =13 N in parallel 5 10 M
. t,0 = —e b=l
— Receive x(!), set X(E ) — x( 2 105 R e Hed
— Forh=0to H-1 g +E:;
= — =
t,h+1 t,h t,h t,h+1 A e
xé + ):xg )—'yVFC(Xé );Zc( +)) = 10774 H=16
g —— H=32
<
o Aggregate local models 1091, i i
LN (tH 0 200 400
x(t+D) = N Zc:l Xg ) Communications

1B. McMahan et al. “Communication-efficient learning of deep networks from decentralized data”. In: AISTATS. 2017.



Classical analyses of this algorithm

(For L-smooth, p-strongly convex functions)

Choose your favorite heterogeneity measure

o firstorder': ¢ =13V |IV£(x*) - Vf(x*)||2
o second-order: ¢ = L5V IV2f(x*) — V2F (x*)||?
o average drift®: { = || 2N SIS V(") - V(x|

2

IX. Lian et al. “Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel SGD". In: NeurlPS (2017).
2A. Khaled and C. Jin. “Faster federated optimization under second-order similarity”. In: arXiv (2022).

3. Wang et al. “On the Unreasonable Effectiveness of Federated Averaging with Heterogeneous Data”. In: TMLR (2024).
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o firstorder': ¢ =13V |IV£(x*) - Vf(x*)||2
o second-order: ¢ = L5V IV2f(x*) — V2F (x*)||?
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2

Show convergence to a neighborhood of x*

I =52 < (1= 3T [x — x| + X(, Hy €) (for some function x)

IX. Lian et al. “Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel SGD". In: NeurlPS (2017).
2A. Khaled and C. Jin. “Faster federated optimization under second-order similarity”. In: arXiv (2022).

3. Wang et al. “On the Unreasonable Effectiveness of Federated Averaging with Heterogeneous Data”. In: TMLR (2024).
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—|— FedAvg * Global Solution x FedAvg's Solution Convergence neighborhood

When the number of local iterations increases, bias incrases
... but the bound is oblivious to problem’s geometry

Remark: It seems that iterates converge in some way?
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FedAvg (with stochastic gradients) converges!?

(For thrice derivable, L-smooth, u-strongly convex functions)

e FedAvg converges to a stationary distribution 7(*/)
— denoting x(!) ~ 4 (, we have

Wi (s m ) < (1= )" W (thy0; 7))

— where W is the second order Wasserstein distance

1p, Mangold et al. “Refined Analysis of Constant Step Size Federated Averaging and Federated Richardson-Romberg Extrapolation”. In:
AISTATS. 2025.



FedAvg (with stochastic gradients) converges!?

(For thrice derivable, L-smooth, u-strongly convex functions)

o FedAvg converges to a stationary distribution 7(?-*)
e FedAvg's iterates covariance is

/ (x — xY(x — x) T 70M(dx) = | LC(x) |+ 0(+3/2H)

ip. Mangold et al. “Refined Analysis of Constant Step Size Federated Averaging and Federated Richardson-Romberg Extrapolation”. In:
AISTATS. 2025.



FedAvg (7—-~—=———=—adients) converges!'

(For Linear speed-up !

trongly convex functions)
variance decreases in 1/N

variance scales in

e FedAvg converg § bn w(v:H)
e FedAvg's iterates covariance is
/(X — x)(x = x*) "7 (dx) = %C(X*) + O(7*?H)

p. Mangold et al. “Refined Analysis of Constant Step Size Federated Averaging and Federated Richardson-Romberg Extrapolation”. In
AISTATS. 2025.



FedAvg (with stochastic gradients) converges!?

(For thrice derivable, L-smooth, u-strongly convex functions)

e FedAvg converges to a stationary distribution 7(*/)
e FedAvg's iterates covariance is
e We can now give an exact expansion of the bias

/XW(%H)(dX) =x"+

W(H_l)N 270 x\—1 (72 *
T;V f(x*) (V2 fe(x

) = V2 (x")) VEc(x")

V24 NI TP r AL
2NV;‘(X) V2 (x*)A™"C(x™)

+ O(7*/?H)

1p. Mangold et al. “Refined Analysis of Constant Step Size Federated Averaging and Federated Richardson-Romberg Extrapolation”. In:

AISTATS. 2025.




FedAveo (with staochastic g adients) convergegl!

Heterogeneity bias th, u-s Stochasticity bias

vanishes when V2f.(x*) = V2f(x*) A=1@Vf(x*)+ V3 (x*)® I
' or when V1 (x*) = Vf(x*)  itributi C(x*)is VF#'s covariance at x*

FCUAVE S TLCTALTS Luvdariaricc is

e We can now give an exact exgw the bias

/Xﬂ'(%H)(dx) =x"+

v(H—1) i 20f n 20 (o * 200y * *
T;v F(x)H(V2R(x") = V2F(x")) VE(x")

STV () IV (x)ATIC(x) |+ O(/2H)

1p. Mangold et al. “Refined Analysis of Constant Step Size Federated Averaging and Federated Richardson-Romberg Extrapolation”. In:

AISTATS. 2025.




|I. Correcting heterogeneity: Scaffold



Scaffold? X* € arg min,cpo

At each global iteration

e For c =1 to N in parallel

— Receive x(9), set th,o) = x(0)
— Forh=0to H-1
Xét’h+1) (t h) (VF ( (t h+1) )+££t))

o Aggregate models, update control variates

N H
X(t+1) = % Zc:l X‘St )

e = & 4 S (02" — o)

3 e Ez[Fe(x: 2)]

1s. p. Karimireddy et al. “Scaffold: Stochastic controlled averaging for federated learning”. In: ICML. 2020.



Scaffold? ' € argmin,ces & SN, Bl 2)]

At each global iteration

e For c =1to N in parallel é 10-31 e Het
— Receive x(*), set x{"% = x(® T o
— Forh=0to H-1 g 107 —— =8

Uc; H=16
h+1 h) h+1) o

D =80y (VR (P 28 ) 1el0) 20 N

=

e Aggregate models, update control variates 10794 ; ;

u 0 200 400
x(t+1) — % ZQI 1 X(t’ ) Communications
gl — ¢ L(ebM — gtt+1)) — No more heterogeneity bias!
5

1s. p. Karimireddy et al. “Scaffold: Stochastic controlled averaging for federated learning”. In: ICML. 2020.



Scaffold also converges !
(For L-smooth, p-strongly convex functions with V3f(x) bounded by Q)

e Scaffold converges if YHL < 1, towards a distribution (%)
— denoting x(Y) ~ 1)), we have

Wa(1h; 7)) < (1 — ) " Wo (10 7 1))

— where W, is the second order Wasserstein distance

1p. Mangold et al. “Scaffold with Stochastic Gradients: New Analysis with Linear Speed-Up”. In: arxiv preprint. 2025.



Scaffold also converges !
(For L-smooth, p-strongly convex functions with V3f(x) bounded by Q)

e Scaffold converges if YHL < 1, towards a distribution 7(7:H)

e Scaffold's variance is close to FedAvg's variance

= x)x = )70 =| L) |+ 002)

1p. Mangold et al. “Scaffold with Stochastic Gradients: New Analysis with Linear Speed-Up”. In: arxiv preprint. 2025.



Scaffold also converges !
s with V3f(x) bounded by Q)

(For L-smo Linear speed-up !

variance decreases in 1/N
variance scales in y
e Scaffold’s variarces—crose o CUAVE awce

H)

e Scaffold conve stribution 7(*>

= x)x = )70 =| L) |+ 002)

1p. Mangold et al. “Scaffold with Stochastic Gradients: New Analysis with Linear Speed-Up”. In: arxiv preprint. 2025.



Scaffold also converges !
(For L-smooth, p-strongly convex functions with V3f(x) bounded by Q)

e Scaffold converges if YHL < 1, towards a distribution 7(7:H)

e Scaffold's variance is close to FedAvg's variance

e Scaffold still has some bias

/Xﬂ'(%H)(dX) =x" —

7 o2
—V-f
2NV

(") IV (x)ATIC(xY)

+0(+*?)

1p. Mangold et al. “Scaffold with Stochastic Gradients: New Analysis with Linear Speed-Up”. In: arxiv preprint. 2025.



Scaffold also converges !

(For L-smooth, p-strongly convex functio

e Scaffold converges if YHL < 1, towards a d

e Scaffold's variance is close to FedAvg's var

Stochasticity bias remains

A=1® V2F(x) + V2F(x*) @ |
C(x*) is VF#'s covariance at x*

e Scaffold still has some bias

2N

[ xn0(@x) = x ~ | ST IVHATCR) |+ 06

1p. Mangold et al. “Scaffold with Stochastic Gradients: New Analysis with Linear Speed-Up”. In: arxiv preprint. 2025.
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New Convergence Rate for Scaffold
(For L-smooth, p-strongly convex functions with V3f(x) bounded by Q)

HT 2
E[IXT —x 17 S (1-28)7 §Ix@ = x|+ 2222 + =
4 L
3/2 3142
Y oo VPR 3 YHQE
" Ny’ - PEE - o

where

e 02 =E[} SN IVFZ(x*) — VE(x*)|[2 is the variance at x*

e (2=3% ZLVZI [V£Z(x*)||> measures gradient heterogeneity

11



Linear Speed-Up!

As long as N is not too large, one can obtain E [||x{T) — x*||?] < € with

Hgrad lient 5( % tog [ )
ra er client = —)— 10 —
grad p e

12



Conclusion

e FedAvg and Scaffold converge (even with stochastic gradients)

e This allows to derive new analyses for these problems,
with exact first-order expression for bias

e And we proved that Scaffold has:
— variance similar to FedAvg's variance
— linear speed-up in the number of clients!!

13



Thank you!

Check the papers:
e P. Mangold et al. “Refined Analysis of Constant Step Size Federated Averaging
and Federated Richardson-Romberg Extrapolation”. In: AISTATS. 2025

e P. Mangold et al. “Scaffold with Stochastic Gradients: New Analysis with Linear
Speed-Up". In: arxiv preprint. 2025

Find this presentation on my website:
e https://pmangold.fr/research.php?page=talks
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